O
Financial support of this project was provided by the National
Institutes of Health (GM 53386). We thank Ms Hanna Cho for
the protease inhibition assay.
H
NZ
O
NHZ
HO
H
Hb
H-N
i
Boc-N
Ha
Ph
Ph
Ph
Ph
Notes and references
10
12
1 S. Thaisrivongs, Annu. Rep. Med. Chem., 1994, 29, 133; P. L. Darke
and J. R. Huff, Advances in Pharmacology, ed. J. T. August, M. W.
Anders and F. Murad, Academic Press, San Diego, 1994, 25, 399 and
references cited therein.
ii,iii
iv,v
2 (a) D. J. Kempf, K. C. Marsh, J. F. Denissen, E. McDonald, S.
Vasavononda, C. A. Flentge, B. G. Green, L. Fino, C. H. Park,
X.-P. Kong, N. E. Wideburg, A. Saldivar, L. Ruiz, W. M. Kati, H. L.
Sham, T. Robins, K. D. Stewart, A. Hsu, J. J. Plattner, J. Leonard and D.
Norbeck, Proc. Natl. Acad. Sci. U.S.A., 1995, 92, 2484; (b) J. P. Vacca,
B. D. Dorsey, W. A. Schleif, R. B. Levin, S. L. McDaniel, P. L. Darke,
J. Zugay, J. C. Quintero, O. M. Blahy, E. Roth, V. V. Sardana, A. J.
Schlabach, P. I. Graham, J. H. Condra, L. Gotlib, M. K. Holloway, J.
Lin, I-W. Chen, K. Vastag, D. Ostovic, P. S. Anderson, E. A. Emini and
J. R. Huff, Proc. Natl. Acad. Sci. U.S.A., 1994, 91, 4096; (c) N. A.
Roberts, J. A. Martin, D. Kinchington, A. V. Broadhurst, J. C. Craig,
I. B. Duncan, S. A. Galpin, B. K. Handa, J. Kay, A. Krohn, R. W.
Lambert, J. H. Merrett, J. S. Mills, K. E. B. Parkes, S. Redshaw, A. J.
Ritchie, D. L. Taylor, G. J. Thomas and P. J. Machin, Science, 1990,
248, 358 and references cited therein.
3 D. S. Stein, D. G. Fish, J. A. Bilello, S. L. Preston, G. L. Martineau and
G. L. Drusano, AIDS, 1996, 10, 485; J. M. Schapiro, M. A. Winters, F.
Stewart, B. Efron, J. Norris, M. J. Kozal and T. C. Merigan, Ann. Intern.
Med., 1996, 124, 1039 and references cited therein.
4 J. W. Erickson and S. W. Fesik, Annu. Rep. Med. Chem., 1992, 26, 271
and references cited therein.
5 (a) A. K. Ghosh, S. P. McKee, W. J. Thompson, P. L. Darke and J. C.
Zugay, J. Org. Chem., 1993, 58, 1025; (b) T. L. Stuk, A. R. Haight, D.
Scarpetti, M. S. Allen, J. A. Menzia, T. A. Robbin, S. I. Parekh, D. C.
Langridge, J.-H. Tien, R. J. Pariza and F. A. J. Kerdesky, J. Org. Chem.,
1994, 59, 4040.
6 R. I. Trust and R. E. Ireland, Org. Synth., 1988, Coll. Vol. 6, 606.
7 Z.-M. Wang, X.-L. Zhang, K. B. Sharpless, S. C. Sinha, A. Sinha-
Bagchi and E. Keinan, Tetrahedron Lett., 1992, 33, 6407; K. B.
Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K. S.
Jeong, H.-L. Kwong, K. Morikawa, Z.-M. Wang, D. Xu and X.-L.
Zhang, J. Org. Chem., 1992, 57, 2768.
H
N-Boc
H
NZ
HO
HO
H
H
Boc-N
Boc-N
Ph
Ph
Ph
Ph
14
13
Scheme 2 Reagents and conditions: i, SOCl2, THF, 23 °C, 73%; ii, KOH,
EtOH–H2O (1:1), 70 °C; iii, THF, Boc2O, NaHCO3, 23 °C, 52%; iv,
Boc2O, Et3N, DMAP (cat), THF, 23 °C, 93%; v, Cs2CO3, PriOH–MeOH
(6:1), 23 °C, 60%.
derivative 9 (overall 65% yield from 7).9 Removal of the silyl
group by treatment with TBAF in THF at 23 °C afforded the
dipeptide isostere 10 with (4R)-configuration. Catalytic hydro-
genation of 10 over 10% Pd/C in the presence of Boc2O and
Et3N furnished the Boc derivative 11 in 72% yield after silica
gel chromatography.
In the ritonavir isostere, the (4S)-configuration of the
hydroxy group is known to be essential for effective enzyme
inhibitory properties.2a, 5, 10 Therefore, the C-4 hydroxy group
stereochemistry was inverted as depicted in Scheme 2. Reaction
of 10 with SOCl2 in THF at 23 °C furnished the oxazolidinone
12 (73%). The vicinal coupling constant of oxazolidinone 12 is
consistent with an anti stereochemical relationship (JAB 4.8
Hz).11 Treatment of the oxazolidinone 12 with KOH in EtOH–
H2O (1:1) resulted in the cleavage of the Z group and the
oxazolidinone ring. Boc protection of the free amines afforded
the biologically active dipeptide mimetic 13. Differentially
protected dipeptide mimic 14 was prepared by protection of
oxazolidinone 12 with Boc2O and Et3N in the presence of a
catalytic amount of DMAP in THF followed by selective
cleavage of the oxazolidinone ring by treatment with Cs2CO3 in
PriOH–MeOH (6:1) at 23 °C for 6 h.12 Consistent with the
previous report, dipeptide mimic 11 with (4R)-hydroxy config-
uration has shown enzyme inhibitory potency (IC50 value)
greater than 2 mM in the assay protocol developed by Toth and
Marshall.13, 14 Inversion of the C-4 hydroxy configuration of 10
resulted in derivatives 13 and 14 with inhibitory potencies of
118 nM and 75 nM respectively. Dipeptide isostere 14 has been
previously converted to ritonavir and its derivatives.2a
In conclusion, we have developed an enantioselective
synthesis of the core unit of ritonavir by utilizing Sharpless’
catalytic asymmetric dihydroxylation reaction as the key step.
The present route provides access to a diverse array of protease
inhibitors containing designed functionalities. Synthesis and
biological evaluation of novel protease inhibitors are currently
in progress.
8 A. K. Ghosh and S. Fidanze, J. Org. Chem., 1998, 63, 6146; A. H. Fray,
R. L. Kaye and E. F. Kleinman, J. Org. Chem., 1986, 51, 4828 and
references therein.
9
T. Shioiri, K. Ninomiya and S. Yamada, J. Am. Chem. Soc., 1972, 94,
6203; G. L. Grunewald and Q. Ye, J. Org. Chem., 1988, 53, 4021; A. K.
Ghosh and W. Liu, J. Org. Chem., 1996, 61, 6175.
10 D. H. Rich, C.-Q. Sun, J. V. N. Prasad, A. Pathiasseril, M. V. Toth, G. R.
Marshall, M. Clare, R. A. Mueller and K. Houseman, J. Med. Chem.,
1991, 34, 1225.
11 D. J. Kempf, D. W. Norbeck, L. Codacovi, X. C. Wang, W. E.
Kohlbrenner, N. E. Wideburg, D. A. Paul, M. F. Knigge, S.
Vasavanonoda, A. Craig-Kennard, A. Saldivar, W. Rosenbrook Jr., J. J.
Clement, J. J. Plattner and J. Erickson, J. Med. Chem., 1990, 33, 2687;
A. K. Ghosh, S. P. McKee and W. J. Thompson, Tetrahedron Lett.,
1991, 32, 5729.
12 T. Ishizuka and T. Kunieda, Tetrahedron Lett., 1987, 28, 4185; H.
Matsunaga, T. Ishizuka and T. Kunieda, Tetrahedron, 1997, 53, 1275.
13 M. V. Toth and G. R. Marshall, Int. J. Pept. Protein Res. 1990, 36,
544.
14 In-house prepared saquinavir [ref. 2(c)] exhibited an IC50 value of 1.6
nM in the same assay.
Communication 9/02518I
1026
Chem. Commun., 1999, 1025–1026