ChemComm
Communication
Table 3 Gold(III) complex-silver catalyzed cyclization–addition reactions of alkynyl
alcohols 7a–7g and substituted indoles 8a–8ja
We are thankful for the financial support from the Hong Kong
Research Grants Council (PolyU 5031/11p) and The Hong Kong
Polytechnic University (SEG PolyU01). We also thank Prof. Chun-Yu
Ho of South University of Science & Technology of China for his
comments on the bis-cyclometallated gold(III) complexes.
Notes and references
1 (a) A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180; (b) D. J. Gorin and
F. D. Toste, Nature, 2007, 446, 395; (c) Z. Li, C. Brouwer and C. He,
´
Chem. Rev., 2008, 108, 3239; (d) A. Corma, A. Leyva-Perez and
M. J. Sabater, Chem. Rev., 2011, 111, 1657.
Entry
n
R1
R2
R3
X
Product Isolated yield (%)
2 Reviews: (a) N. Krause and C. Winter, Chem. Rev., 2011, 111, 1994;
Selected examples: (b) G. Dyker, E. Muth, A. S. K. Hashmi and
L. Ding, Adv. Synth. Catal., 2003, 345, 1247; (c) G. Dyker,
D. Hildebrandt, J. H. Liu and K. Merz, Angew. Chem., Int. Ed.,
2003, 42, 4399; (d) Z. Shi and C. He, J. Am. Chem. Soc., 2004,
126, 13596; (e) M. Georgy, V. Boucard and J. M. Campagne, J. Am.
Chem. Soc., 2005, 127, 14180; ( f ) D. A. Engel and G. B. Dudley, Org.
Lett., 2006, 8, 4027.
3 Reviews: (a) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev.,
2008, 108, 3351; (b) H. Schmidbaur and A. Schier, Arabian J. Sci. Eng.,
2012, 37, 1187; Selected examples: (c) A. S. K. Hashmi, M. C. Blanco,
D. Fischer and J. W. Bats, Eur. J. Org. Chem., 2006, 1387;
(d) D. Aguilar, M. Contel, R. Navarro and E. P. Urriolabeitia, Organo-
metallics, 2007, 26, 4604; (e) D. Aguilar, M. Contel, R. Navarro,
T. Soler and E. P. Urriolabeitia, J. Organomet. Chem., 2009, 694, 486.
4 Reviews: (a) N. D. Shapiro and F. D. Toste, Synlett, 2010, 675;
(b) F. D. Toste, Synlett, 2012, 46; Selected examples:
1
2
3
4
5
6
7
8
1
1
1
1
2
3
3
1
1
1
1
1
1
1
1
1
CH3
C2H5 CH3
C3H7 CH3
Ph
Ph
C4H9 CH3
H
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
Br
9a
9b
9c
9d
9e
9f
80
74
78
CH3
CH3
75
74b
84c
94c
80
CH3
CH3
CH3
CH3
9g
9h
9
OMe 9i
NO2
H
H
Br
OMe 9n
NO2
H
80
10
11
12
13
14
15
16
9j
9k
9l
67d
40
CH3 CH3
H
H
H
H
H
H
H
H
H
75
9m
71e
53
9o
9p
70d
58
CH3
´
´
(c) P. Mauleon, R. M. Zeldin, A. Z. Gonzalez and F. D. Toste, J. Am.
Chem. Soc., 2009, 131, 6348; (d) W. Wang, G. B. Hammond and
B. Xu, J. Am. Chem. Soc., 2012, 134, 5697; (e) M. C. B. Jaimes, C. R. N.
a
Reaction conditions: 7a–7g (0.24 mmol) and 8a–8j (0.2 mmol) in
b
c
CH2Cl2 (2 mL). 5-Exo-dig cyclized product was formed. 6-Exo-dig
cyclized products were formed. 16 h. 4 h.
d
e
¨
Bohling, J. M. Serrano-Becerra and A. S. K. Hashmi, Angew. Chem.,
Int. Ed., 2013, 52, 7963, DOI: 10.1002/anie.201210351.
´
5 (a) A. S. K. Hashmi, J. P. Weyrauch, M. Rudolph and E. Kurpejovic,
Angew. Chem., Int. Ed., 2004, 43, 6545; (b) A. S. K. Hashmi,
Table 4 Recyclability experiments of 1 and KAuCl4 in three-component reactiona
¨
M. Rudolph, J. P. Weyrauch, M. Wolfle, W. Frey and J. W. Bats,
Angew. Chem., Int. Ed., 2005, 44, 2798; (c) N. Debono, M. Iglesias and
´
F. Sanchez, Adv. Synth. Catal., 2007, 349, 2470; (d) A. S. K. Hashmi,
M. Rudolph, H. U. Siehl, M. Tanaka, J. W. Bats and W. Frey,
Chem.–Eur. J., 2008, 14, 3703; (e) N. D. Shapiro, Y. Shi and
F. D. Toste, J. Am. Chem. Soc., 2009, 131, 11654; ( f ) Y. Zhang, B. Feng
and C. Zhu, Org. Biomol. Chem., 2012, 10, 9137; (g) J. A. O’Neill,
G. M. Rosair and A.-L. Lee, Catal. Sci. Technol., 2012, 2, 1818.
6 (a) V. K.-Y. Lo, Y.-G. Liu, M.-K. Wong and C.-M. Che, Org. Lett., 2006,
8, 1529; (b) V. K.-Y. Lo, M.-K. Wong and C.-M. Che, Org. Lett., 2008,
10, 517; (c) M.-Z. Wang, M.-K. Wong and C.-M. Che, Chem.–Eur. J.,
2008, 14, 8353.
7 W. Henderson, Adv. Organomet. Chem., 2006, 54, 207.
8 (a) V. K.-Y. Lo, K. K.-Y. Kung, M.-K. Wong and C.-M. Che,
J. Organomet. Chem., 2009, 694, 583; (b) K. K.-Y. Kung, G.-L. Li,
L. Zou, H.-C. Chong, Y.-C. Leung, K.-H. Wong, V. K.-Y. Lo, C.-M. Che
and M.-K. Wong, Org. Biomol. Chem., 2012, 10, 925; (c) K. K.-Y. Kung,
V. K.-Y. Lo, H.-M. Ko, G.-L. Li, P.-Y. Chan, K.-C. Leung, Z. Zhou,
M.-Z. Wang, C.-M. Che and M.-K. Wong, Adv. Synth. Catal., 2013,
355, 2055, DOI: 10.1002/adsc.201300005.
Cycle
1
2
3
4
5
6
7
Conversionb (%) by 1
99
99
97
94
93
82
85
65
89
51
86
38
89
29
Conversionb (%) by KAuCl4
a
Reaction conditions: 3a (1 mmol), 4a (1.1 mmol) and 5a (1.5 mmol) in
H2O (1 mL). Determined by 1H NMR.
b
Table 5 Recyclability experiment of ‘‘1 + AgBF4’’ in the reaction of 7a and 8a at
a
room temperature in CDCl3
9 H.-L. Kwong, H.-L. Yeung, C.-T. Yeung, W.-S. Lee, C.-S. Lee and
W.-L. Wong, Coord. Chem. Rev., 2007, 251, 2188.
10 (a) P. A. Bonnardel, R. V. Parish and R. G. Pritchard, J. Chem. Soc.,
Dalton Trans., 1996, 3185; (b) D. Fan, C.-T. Yang, J. D. Ranford,
P. F. Lee and J. J. Vittal, Dalton Trans., 2003, 2680; (c) K. J. Kilpin,
W. Henderson and B. K. Nicholson, Inorg. Chim. Acta, 2009,
362, 3669.
11 C. Wei and C.-J. Li, J. Am. Chem. Soc., 2003, 125, 9584.
12 D. Wang, R. Cai, S. Sharma, J. Jirak, S. K. Thummanapelli,
N. G. Akhmedov, H. Zhang, X. Liu, J. L. Petersen and X. Shi, J. Am.
Chem. Soc., 2012, 134, 9012.
Cycle
1
2
3
4
5
6c
7
8
9
10 11c
Conversionb (%) 85 81 81 78 73 88 87 85 81 74 83
a
Reaction conditions: 7a (0.24 mmol) and 8a (0.2 mmol) in CDCl3 (2 mL).
b Determined by 1H NMR. c Additional AgBF4 (5 mol%) was added.
KAuCl4 or ‘‘KAuCl4 + AgBF4’’ as catalysts gave no product in the
2nd cycle.
13 C. Ferrer, C. H. Amijs and A. M. Echavarren, Chem.–Eur. J., 2007,
13, 1358.
In conclusion, we have developed two novel strategies 14 S. Bhuvaneswari, M. Jeganmohan and C.-H. Cheng, Chem.–Eur. J.,
2007, 13, 8285.
rendering stable bis-cyclometallated gold(III) complexes as
efficient catalysts in organic synthesis by (1) ligand design
15 (a) A. S. K. Hashmi, Chem.–Eur. J., 2013, 19, 1058; (b) Y.-Z. Wang,
L.-Z. Liu and L.-M. Zhang, Chem. Sci., 2013, 4, 739.
and (2) dual catalysis.
16 A. Zanardi, J. A. Mata and E. Peris, Chem.–Eur. J., 2010, 16, 13109.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 8869--8871 8871