ChemComm
Communication
used in all calculations. The final R1 was 0.0525 (I > 2s(I)) and wR(F2)
was 0.1537 (all data).
1 R. Huisgen and H. Blaschke, Chem. Ber., 1965, 98, 2985; J. Meinwald
¨
and D. H. Aue, J. Am. Chem. Soc., 1966, 88, 2849; M. Mortl,
´
¨
´
´
D. Knausz, Z. Bocskei, Z. Kolos, K. Ujszaszy, L. Szakacs and
´
P. Sohar, J. Organomet. Chem., 1995, 492, 115; K. U. Clauss,
K. Buck and W. Abraham, Tetrahedron, 1995, 51, 7181.
2 For a recent review of nitrene chemistry: G. Dequirez, V. Pons and
P. Dauban, Angew. Chem., Int. Ed., 2012, 51, 7384.
3 I. Cano, E. Alvarez, M. C. Nicasio and P. J. Perez, J. Am. Chem. Soc.,
2011, 133, 191.
Scheme 2 Use of activated benzenoid derived alkynes.
4 W. He, C. Li and L. Zhang, J. Am. Chem. Soc., 2011, 133, 8482; Y. Luo,
K. Ji, Y. Li and L. Zhang, J. Am. Chem. Soc., 2012, 134, 17412.
5 X. Li, L. Huang, H. Chen, W. Wu, H. Huang and H. Jiang, Chem. Sci.,
2012, 3, 3463; A. Saito, A. Taniguchi, Y. Kambara and Y. Hanzawa,
Org. Lett., 2013, 15, 2672.
6 P. W. Davies, A. Cremonesi and L. Dumitrescu, Angew. Chem., Int.
Ed., 2011, 50, 8931.
7 V. S. C. Yeh, Tetrahedron, 2004, 60, 11995.
8 Q. Zhao, S. Liu, Y. Li and Q. J. Wang, J. Agric. Food Chem., 2009,
57, 2849.
9 J. Min, J. W. Lee, Y.-H. Ahn and Y.-T. Chang, J. Comb. Chem., 2007,
9, 1079.
Scheme 3 The electronic influence of the amino substituent.
`
a recent example: J. Mazuela, P. Tolstoy, O. Pamies,
10 For
´
P. G. Andersson and M. Dieguez, Org. Biomol. Chem., 2011, 9, 941.
11 Z.-H. Gong, C.-M. Leu, F.-I. Wu and C.-F. Shu, Macromolecules, 2000,
33, 8527.
12 The Chemistry of Heterocyclic Compounds, Oxazoles: Synthesis, Reac-
tions and Spectroscopy, Parts A & B, ed. D. C. Palmer, Wiley-Inter-
science, Hoboken, NJ, 2004.
3fe vs. 3ef). Useful substitution patterns are also tolerated on the
indole, such as 5-bromo- (3k) and 6-carboxylic ester (3l), despite
conjugation of the indole nitrogen lone pair with the electron-
withdrawing group in the latter case.
13 For intermolecular oxygen transfer onto internal alkynes see: B. Lu,
C. Li and L. Zhang, J. Am. Chem. Soc., 2010, 132, 14070; C. W. Li,
K. Pati, G. Y. Lin, S. M. A. Sohel, H. H. Hung and R. S. Liu, Angew.
Chem., Int. Ed., 2010, 49, 9891; A. S. K. Hashmi, T. Wang, S. Shi and
M. Rudolph, J. Org. Chem., 2012, 77, 7761.
14 Nitrene transfers onto p-acid activated alkynes: Intramolecular:
D. J. Gorin, N. R. Davis and F. D. Toste, J. Am. Chem. Soc., 2005,
127, 11260; Z. Huo and Y. Yamamoto, Tetrahedron Lett., 2009,
50, 3651; A. Wetzel and F. Gagosz, Angew. Chem., Int. Ed., 2011,
50, 7354; B. Lu, Y. Luo, L. Liu, L. Ye, Y. Wang and L. Zhang, Angew.
Chem., Int. Ed., 2011, 50, 8358; Y. Xiao and L. Zhang, Org. Lett., 2012,
14, 4662; Z. Y. Yan, Y. Xiao and L. Zhang, Angew. Chem., Int. Ed.,
2012, 51, 8624; Intermolecular onto ynamides: C. Li and L. Zhang,
Org. Lett., 2011, 13, 1738; ref. 6.
Substituted benzene derivatives were examined to probe the
importance of remote activation of the alkyne by a conjugated
nitrogen lone pair (Scheme 2). Whilst p-N,N-dialkyl systems
4(a–c) afforded the desired oxazoles 5(a–c)a as single regioisomers
in good to moderate yield, neither the m-aniline derivative 4d or a
p-anisole derivative 4e underwent reaction. An N-unsubstituted
analogue afforded complex mixtures. The reactivity trend corre-
lates across all the systems tested with the ability of the hetero-
atom lone pair to donate electron density onto the alkyne.23
The remarkable distinction between the activating effects of
amino vs. alkoxy groups on this cycloaddition was further exam-
ined: despite competition between two nominally activating
groups and an absence of steric bias about the alkyne, 6 reacted
to give oxazole 7 in high yield as a single regioisomer (Scheme 3).
In conclusion, a convergent and efficient synthesis of poly-
aromatic 2,4,5-trisubsituted oxazoles has been developed from
readily prepared starting materials. The reaction shows pyridine-
N-aminides can be employed as acyl nitrene equivalents for
selective formal [3+2]-cycloaddition onto electron-rich internal
alkynes under gold-catalysis. A remote conjugated nitrogen lone
pair exerts superb regiochemical control over this intermolecular
process. Further investigations into the mechanism and applica-
tion of this formal [3+2]-cycloaddition strategy are on-going.
The authors thank Dr Louise Male (University of Birmingham)
for X-ray crystallography and the University of Birmingham for
financial support. The facilities used in this research were part
supported through Birmingham Science City AM2 by Advantage
West Midlands and the European Regional Development Fund.
15 Further use of ynamide to exert regiocontrol in intermolecular
reactions from our group: P. W. Davies, A. Cremonesi and
N. Martin, Chem. Commun., 2011, 47, 379.
16 A. S. K. Hashmi and G. J. Hutchings, Angew. Chem., Int. Ed., 2006,
118, 8064; D. J. Gorin and D. Toste, Nature, 2007, 446, 395;
A. Fu¨rstner and P. W. Davies, Angew. Chem., Int. Ed., 2007, 46, 3410.
17 A less synchronous process of N–N bond scission and C–O bond
formation can also be considered. For related discussion see: ref. 6
and also: S. Kramer and T. Skrydstrup, Angew. Chem., Int. Ed., 2012,
51, 4681; X. Huang, B. Peng, M. Luparia, L. F. R. Gomes, L. F. Veiros
and N. Maulide, Angew. Chem., Int. Ed., 2012, 51, 8886.
18 C. H. M. Amijis, V. Lopez-Carillo, M. Raducan, P. Perez-Galan,
C. Ferrer and A. M. Echavarren, J. Org. Chem., 2008, 73, 7721.
19 C. Legault and A. B. Charette, J. Org. Chem., 2003, 68, 7119.
20 J. R. Davies, P. D. Kane, C. J. Moody and A. M. Z. Slawin, J. Org. Chem.,
2005, 70, 5840; F. Miyake, M. Hashimoto, S. Tonsiengsom, K. Yakushijin
and D. A. Horne, Tetrahedron, 2010, 66, 4888; D. Kumar, S. Sundaree,
G. Patel and V. S. Rao, Tetrahedron Lett., 2008, 49, 867.
21 O. Grotkopp, A. Ahmad, W. Frank and T. J. J. Muller, Org. Biomol.
Chem., 2011, 9, 8130.
22 For an example see: K. Dalip, N. M. Kumar, S. Sundaree,
E. O. Johnson and K. Shah, Eur. J. Med. Chem., 2010, 45, 1244.
23 Considering the reaction determining step to be nucleophilic addi-
tion onto the alkyne–gold complex B: the greater ability of nitrogen
over oxygen to donate electron density (represented as B0 Scheme 1),
appears key in the observed reactivity to render the LUMO of B
sufficiently accessible. p-Aniline is therefore predicted to be less
activating than 3-indolyl due to the greater disruption of aromatic
character represented through the charged resonance forms in the
former (analogous to B0) resulting in longer reaction times.
Notes and references
‡ CCDC 950268. Crystal data for 3aa: C23H16N2O, M = 336.38, mono-
clinic, a = 12.0222(2) Å, b = 7.2396 (1) Å, c = 20.9825(3) Å, b = 106.482(1),
U
= T = 120(2) K, space group P21/c, Z = 4,
1751.19(5) Å3,
11 907 reflections measured, 3042 unique (Rint = 0.0655) which were
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 8617--8619 8619