ChemComm
Communication
of wound because it could promote angiogenesis in the wound
bed, thus accelerating the wound healing process. The production
of hydrogel formulation could minimize fast diffusion and
clearance of bioactive molecules. We therefore believed that
our hydrogel system had great potential for local controllable
delivery of NO for regenerative medicine and tissue engineering.
This work is supported by National Basic Research Program
of China (2011CB964903) and NSFC (31070856, 81220108015,
81171478, and 81000680).
Fig. 2 (A) Percentage of wound area left in different groups at Day 7 compared
to the original wound area (mean ꢂ SEM) at Day 0. (B) Photographs of wounds in
animals treated with PBS, NapFF (hydrogel containing 1.0 wt% NapFF), Free NO +
Notes and references
1 R. Iyengar, D. J. Stuehr and M. A. Marletta, Proc. Natl. Acad. Sci.
U. S. A., 1987, 84, 6369; R. M. Palmer, A. G. Ferrige and S. Moncada,
Nature, 1987, 327, 524.
2 L. J. Ignarro, Nitric oxide: biology and pathobiology, Academic press,
2000.
3 P. G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai and
A. J. Janczuk, Chem. Rev., 2002, 102, 1091.
GAL (solution containing 0.2 wt% of 2 with daily addition of 1.5 ꢁ 10ꢀ4
U
b-galactosidase), NO Gel (hydrogel containing 1.0 wt% NapFF and 0.6 wt% 3
without the addition of b-galactosidase) and NO Gel + GAL (hydrogel containing
1.0 wt% NapFF and 0.6 wt% 3 with the addition of 1.5 ꢁ 10ꢀ4 U b-galactosidase each
day). Significance levels were set to: *p o 0.05, **p o 0.01, and ***p o 0.001.
4 Y. S. Jo, A. J. van der Vlies, J. Gantz, T. N. Thacher, S. Antonijevic,
S. Cavadini, D. Demurtas, N. Stergiopulos and J. A. Hubbell, J. Am. Chem.
Soc., 2009, 131, 14413; A. A. Eroy-Reveles, Y. Leung, C. M. Beavers,
M. M. Olmstead and P. K. Mascharak, J. Am. Chem. Soc., 2008, 130, 4447;
K. Hishikawa, H. Nakagawa, T. Furuta, K. Fukuhara, H. Tsumoto,
T. Suzuki and N. Miyata, J. Am. Chem. Soc., 2009, 131, 7488.
5 N. Barraud, B. G. Kardak, N. R. Yepuri, R. P. Howlin, J. S. Webb,
S. N. Faust, S. Kjelleberg, S. A. Rice and M. J. Kelso, Angew. Chem.,
Int. Ed., 2012, 51, 9057; T. B. Cai, D. Lu, M. Landerholm and
P. G. Wang, Org. Lett., 2004, 6, 4203.
6 R. S. Nandurdikar, A. E. Maciag, S. Y. Hong, H. Chakrapani,
M. L. Citro, L. K. Keefer and J. E. Saavedra, Org. Lett., 2010, 12, 56.
7 J. Boekhoven, M. Koot, T. A. Wezendonk, R. Eelkema and J. H. van
Esch, J. Am. Chem. Soc., 2012, 134, 12908; S. M. Bromfield,
A. Barnard, P. Posocco, M. Fermeglia, S. Pricl and D. K. Smith,
J. Am. Chem. Soc., 2013, 135, 2911; M. O. M. Piepenbrock,
G. O. Lloyd, N. Clarke and J. W. Steed, Chem. Rev., 2009,
110, 1960; J. Raeburn, A. Zamith Cardoso and D. J. Adams, Chem.
Soc. Rev., 2013, 42, 5143; M. Zelzer and R. V. Ulijn, Chem. Soc. Rev.,
2010, 39, 3351; X. L. Zhang, X. L. Chu, L. Wang, H. M. Wang,
G. L. Liang, J. X. Zhang, J. F. Long and Z. M. Yang, Angew. Chem., Int.
Ed., 2012, 51, 4388.
8 K. Han, S. Chen, W. H. Chen, Q. Lei, Y. Liu, R. X. Zhuo and
X. Z. Zhang, Biomaterials, 2013, 34, 4680; S. Ray, A. K. Das and
A. Banerjee, Chem. Mater., 2007, 19, 1633; S. Sutton, N. L. Campbell,
A. I. Cooper, M. Kirkland, W. J. Frith and D. J. Adams, Langmuir,
2009, 25, 10285.
9 Y. Gao, J. Shi, D. Yuan and B. Xu, Nat. Commun., 2012, 3, 1033;
K. Mizusawa, Y. Takaoka and I. Hamachi, J. Am. Chem. Soc., 2012,
134, 13386.
10 T. Aida, E. Meijer and S. Stupp, Science, 2012, 335, 813; A. Altunbas,
S. J. Lee, S. A. Rajasekaran, J. P. Schneider and D. J. Pochan,
Biomaterials, 2011, 32, 5906; J. S. Rudra, S. Mishra, A. S. Chong,
R. A. Mitchell, E. H. Nardin, V. Nussenzweig and J. H. Collier,
Biomaterials, 2012, 33, 6476; H. M. Wang and Z. M. Yang, Nanoscale,
2012, 4, 5259.
31.0, 21.2, 12.3, 14.1 and 14.6 micro-vessels per HPF in the
wound area for NO Gel + GAL, NO Gel, Free NO + GAL, Nap-FF
and PBS groups, respectively. The results indicated that there
was significantly more neo-vascularization in the NO Gel + GAL
group compared to other groups, including the control PBS
group (P = 0.003), Nap-FF group (P = 0.011), Free NO + Gal group
(P = 0.001), and NO Gel group (P = 0.016), as determined by
number of stained micro-vessels per HPF (200ꢁ; 10 fields)
(Fig. S-8A–E, ESI†). There were no significant differences among
the PBS, Nap-FF, and NO Gel groups, suggesting that hydrogels in
these groups failed to promote angiogenesis in the wound area. In
the border area of the wound, the NO Gel + GAL, NO Gel, and
free NO + GAL groups displayed similar vascularization densities
(20.8, 17.9, and 19.8, respectively), which were higher than those
in both PBS and NapFF groups (11.1 and 14.1, respectively). It was
mostly likely that NO donors traveled to the border area and
released NO molecules by enzymes (b-glycosidase or other
digestion enzymes) in blood. Combined with the observation
of the wound area in different groups, the results demonstrated
that the vascularizations in both wound area and border area of
the wound were crucial to the wound healing. These results also
indicated that the combination therapy in the NO Gel + GAL
group could promote angiogenesis in both wound and border
areas, which was conducive to the wound healing process.
In summary, we have reported on the first example of a
molecular hydrogelator with the enzyme-controllable NO release
property. This hydrogelator consisted of a naphthalene-capped 11 C. J. Bowerman and B. L. Nilsson, J. Am. Chem. Soc., 2010, 132, 9526;
F. M. Menger and K. L. Caran, J. Am. Chem. Soc., 2000, 122, 11679.
12 A. W. Carpenter and M. H. Schoenfisch, Chem. Soc. Rev., 2012,
short peptide and a caged NO molecule. The addition of
b-glycosidase could remove the sugar capping group on the
41, 3742; S. Mocellin, V. Bronte and D. Nitti, Med. Res. Rev., 2007,
caged NO molecule, leading to the release of NO in a controllable
way. The release rate of NO was constant and could be tuned via
adjusting the concentration of b-galactosidase added to the
hydrogel. The hydrogel could be applied for topical treatment
27, 317.
13 M. C. Jen, M. C. Serrano, R. van Lith and G. A. Ameer, Adv. Funct.
Mater., 2012, 22, 239; P. C. Lee, A. N. Salyapongse, G. A. Bragdon,
L. L. Shears, S. C. Watkins, H. D. J. Edington and T. R. Billiar, Am. J.
Physiol.: Heart Circ. Physiol., 1999, 277, H1600.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 9173--9175 9175