5418
C. W. Gray et al. / Bioorg. Med. Chem. Lett. 15 (2005) 5416–5418
Table 1. Association constants with 4 in 99:1 10 mM aq phosphate
(pH 7.8)/MeOH
9. (a) Huang, C.-Y.; Cabell, L. A.; Lynch, V.; Anslyn, E. V.
J. Am. Chem. Soc. 1992, 114, 1900; (b) Huang, C.-Y.;
Cabell, L. A.; Anslyn, E. V. J. Am. Chem. Soc. 1994, 116,
2778; (c) Diaz, S. G.; Lynch, V.; Anslyn, E. V. J.
Supermol. Chem. 2002, 2, 201.
10. Ostlund, R. E.; Seemayer, R.; Gupta, S.; Kimmel, R.;
Ostlund, E. L.; Sherman, W. R. J. Biol. Chem. 1996, 271,
10073.
Carbohydrate
Ka (102 MÀ1
)
I/I0
myo-Inositol
D-Galactose
D-Mannose
3.5
2.3
1.8
1.5
1.7
1.4
11. (a) Hartley, J. H.; James, T. D.; Ward, C. J. J. Chem. Soc.,
Perkin Trans. 1 2000, 3155; (b) Striegler, S. Curr. Org.
Chem. 2003, 7, 81.
12. Springsteen, G.; Wang, B. Tetrahedron 2002, 58, 5291; An
alternative mechanism for PET quenching has recently
been put forward: Frazen, S.; Ni, W.; Wang, B. J. Phys.
Chem. B 2003, 107, 12942.
affinity for a monoboronate. Here, the mechanism of
signaling takes precedent over raw affinity for particular
guests.19 While further understanding of the exact nat-
ure of the binding event is needed, this is the first report
of epimer specific chemosensing with a synthetic
receptor.20
13. James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Chem.
Commun. 1994, 477.
14. (a) James, T. D.; Sandanayake, K. R. A. S.; Iguchi, R.;
Shinkai, S. J. Am. Chem. Soc. 1995, 117, 8982; (b) James,
T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Angew.
Chem., Int. Ed. Engl. 1996, 35, 1910.
15. James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S.
Nature 1995, 374, 345.
Acknowledgment
T.A.H. and C.W.G. thank Insmed, Inc., for funding an
industrial internship for C.W.G. during his doctoral
studies.
16. Gray, C. W., Jr.; Houston, T. A. J. Org. Chem. 2002, 67,
5426; For an in-depth study of the stereochemical basis of
this signaling event, see: Zhao, J.; Fyles, T. M.; James, T.
D. Angew. Chem., Int. Ed. 2004, 43, 3461.
Supplementary data
Supplementary data associated with this article can be
17. Triboronate esters of chiro-inositol can form in the gas
phase (Wiecko, J.; Sherman, W. R. J. Am. Chem. Soc.
1979, 101, 979) but such a species is not favored in
aqueous solution. In water, DCI (1) must exist predom-
inantly in the conformation represented in Figure 1 as
1
References and notes
the H NMR of 1 in D2O has a downfield resonance of
minimal splitting corresponding to the two equatorial
methine protons (d 3.86 ppm) and more complex splitting
patterns at 3.4 and 3.6 ppm for the four axial protons.
We have not been unable to obtain quantitative binding
data of DCI with boronates using 1H NMR chemical
shifts.
1. For a review of the chemistry and biochemistry involved
in type II diabetes, see: (a) Ross, S. A.; Gulve, E. A.;
Wang, M. Chem. Rev. 2004, 104, 1255; For other
pharmaceutical targets within inositol signaling cascades,
see: (b) Prestwich, G. D. Chem. Biol. 2004, 11, 619.
2. Asplin, I.; Galasko, G.; Larner, J. Proc. Natl. Acad. Sci.
U.S.A. 1993, 90, 5924.
3. Suzuki, S.; Kawasaki, H.; Satoh, Y.; Ohtomo, M.; Hirai,
M.; Hirai, A.; Hirai, S.; Onoda, M.; Matsumoto, M.;
Hinokio, Y.; Akai, H.; Craig, J.; Larner, J.; Toyota, T.
Diabetes Care 1994, 17, 1465.
4. Nestler, J. E.; Jakubowicz, D. J.; Reamer, P.; Gunn, R.
D.; Allan, G. New Engl. J. Med. 1999, 340, 1314.
5. Larner, J. Endocr. J. 1994, 323, 167.
6. Larner, J.; Price, J. D.; Heimark, D.; Smith, L.; Rule, G.;
Piccariello, T.; Fonteles, M. C.; Pontes, C.; Vale, D.;
Huang, L. J. Med. Chem. 2003, 46, 3283.
18. Predictions based on molecular mechanics minimizations
(Merck Molecular Force Field) using Spartan (Wavefunc-
tion, Inc.) with the dative B–N bonds defined as covalent
bonds.
19. Methyl glucosides have previously shown to be ÔsilentÕ
toward glucose-binding bis(boronates) by a mechanism
similar to what is occurring here (i.e., –methyl glucosides
cannot bind two boronates at once although it presumably
also has lower affinity for the receptor as well, unlike the
present case): Takeuchi, M.; Yoda, S.; Imada, T.; Shinkai,
S. Tetrahedron 1997, 53, 8335; Compounds such as 4 are
specific sensors for glucose over glucosamine: Cooper, C.
R.; James, T. D. Chem. Commun. 1997, 1419.
7. (a) Niikura, K.; Metzger, A.; Anslyn, E. V. J. Am. Chem.
Soc. 1998, 120, 8533; (b) Niikura, K.; Anslyn, E. V. J.
Chem. Soc., Perkin Trans. 2 1999, 2769; (c) Niikura, K.;
Anslyn, E. V. J. Org. Chem. 2003, 68, 10156.
20. We define specific sensing as signal response to only one
epimer and selective sensing as differential responses to
each epimer based on enhanced binding affinity of one
epimer over the other. For an epimer selective receptor,
´
`
8. (a) Morey, J.; Orell, M.; Barcelo, M. A.; Deya, P. M.;
Costa, A.; Ballester, P. Tetrahedron Lett. 2004, 45, 1261;
(b) Tanimura, A.; Nezu, A.; Morita, T.; Turner, R. J.;
Tojyo, Y. J. Biol. Chem. 2004, 279, 38095.
´
`
see: Ballester, P.; Capo, M.; Costa, A.; Deya, P. M.;
Gornila, R.; Decken, A.; Deslongchamps, G. Org. Lett.
2001, 3, 267.