Journal of the American Chemical Society
Communication
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and characterization data. This material
■
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Dr. D. Rogness and G. Snapper for initial amino acid
and peptide oxidation studies, Dr. D. Gray for crystallographic
analysis of (R,R)-2 and (+)-25, Prof. A. Pfaltz for a gift of Ir
catalysts, and Starbucks for coffee grounds. We are grateful to
Bristol-Meyers Squibb, Amgen, and the University of Illinois for
financial support. P.E.G. is a NSF Graduate Research Fellow.
REFERENCES
■
(1) (a) Chen, M. S.; White, M. C. Science 2007, 318, 783. (b) Chen, M.
S.; White, M. C. Science 2010, 327, 566.
(2) White, M. C. Science 2012, 335, 807.
(3) (a) Litvinas, N. D.; Brodsky, B. H.; Du Bois, J. Angew. Chem., Int.
Ed. 2009, 48, 4513. (b) Liu, W.; Groves, J. T. J. Am. Chem. Soc. 2010,
132, 12847. (c) Paradine, S. P.; White, M. C. J. Am. Chem. Soc. 2012, 134,
2036.
of 2 to access new sites of reactivity without the need for
substrate specificity.
(4) (a) Bigi, M. A.; Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2012,
134, 9721. (b) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc.
2004, 126, 9542. (c) Giri, R.; Chen, X.; Yu, J.-Q. Angew. Chem., Int. Ed.
2005, 44, 2112. (d) Simmons, E. M.; Hartwig, J. F. Nature 2012, 483, 70.
(5) Balskus, E. P.; Jacobsen, E. N. Science 2007, 317, 1736.
(6) Lewis, C. A.; Miller, S. J. Angew. Chem., Int. Ed. 2006, 45, 5616.
(7) (a) Lewis, J. C.; Coelho, P. S.; Arnold, F. H. Chem. Soc. Rev. 2011,
40, 2003. (b) Kille, S.; Zilly, F. E.; Acevedo, J. P.; Reetz, M. T. Nature
Chem. 2011, 3, 738.
(8) (a) Groves, J. T.; Neumann, R. J. Am. Chem. Soc. 1989, 111, 2900.
(b) Cook, B. R.; Reinert, T. J.; Suslick, K. S. J. Am. Chem. Soc. 1986, 108,
7281. (c) Breslow, R.; Huang, Y.; Zhang, X.; Yang, Y. Proc. Natl. Acad.
Sci. U.S.A. 1997, 94, 11156.
(9) Das, S.; Incarvito, C. D.; Crabtree, R. H.; Brudvig, G. W. Science
2006, 312, 1941.
(10) Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am.
Chem. Soc. 1990, 112, 2801.
(11) Suzuki, K.; Oldenburg, P. D.; Que, L., Jr. Angew. Chem., Int. Ed.
2008, 47, 1887.
Models for 1 and 2 are supported by empirical data for
substrates incorporated into the original data sets. We next
sought to test the predictive power of these models for
(+)-nectaryl derivative 25, a synthetic terpene-like molecule
used in commercial fragrances that had not been included in the
data sets for either catalyst. Applying our site filter, many likely
sites of oxidation remained (C11, C10/12, C9/13, C8, C7 and
C3): the conformational flexibility of (+)-25 and electronic
similarity of its sites made selective oxidation with either catalyst
a challenging prospect. Applying the catalyst reactivity models,
oxidation of (+)-25 was predicted to modestly favor the more
electron rich, 3° C11 site (1.5:1) for 1 and the least sterically
encumbered C10/12 site (3:1) for 2 (Figure 6).15 Consistent
with these calculations, oxidizing (+)-25 with (S,S)-1 affords 29%
yield of C11 hydroxyl (+)-27 and 23% yield of the C10/12
ketones 26 with poor selectivity (1.3:1). In contrast, (S,S)-2 is
able to overcome the electronic substrate bias to furnish C10/12
oxidation products 26 in a 52% yield with good selectivity (6:1).
This example illustrates 2’s capacity to effect predictable control
on site-selectivity based on nonbonding interactions, even in
complex substrates with high degrees of conformational
flexibility. The site-selectivity models for 1 and 2 are validated
as predictive tools, particularly for substrates whose electronic,
steric, and stereoelectronic features are well represented by the
substrates incorporated into the original data sets.
We show that catalyst control of site-selectivity in aliphatic
C‑H oxidations is possibledespite the significant challenges
associated with controlling highly reactive intermediates
without needing a specific match between one catalyst and one
substrate. The development of quantitative structure-based
catalyst reactivity models will lead to more targeted application
of C-H oxidations at late stages of complex molecule synthesis20
and enable site-divergent diversification of bioactive molecules.
The discovery that site-selectivities of oxidation can be
mathematically correlated to substrate properties as a function
of the catalyst should inform and inspire future catalyst designs.
(12) Leroux, F. ChemBioChem 2004, 5, 644.
(13) For a catalyst with comparable methylene selectivities, but
diminished yields and mass balance relative to Fe(PDP): Prat, I.;
Gomez, L.; Canta, M.; Ribas, X.; Costas, M. Chem.Eur. J. 2013, 19,
1908.
(14) Winstein, S.; Holness, N. J. J. Am. Chem. Soc. 1955, 77, 5562.
(15) For complete details, see SI.
(16) (a) Molecular Operating Environment (MOE), 2011.10; Chemical
Computing Group Inc.: Montreal, 2011. (b) Gaussian 09, Revision B.01;
Gaussian, Inc.: Wallingford, CT, 2010.
(17) Harper, K. C.; Sigman, M. S. Science 2011, 333, 1875.
(18) Bigi, M. A.; Liu, P.; Zou, L.; Houk, K. N.; White, M. C. Synlett
2012, 23, 2768.
(19) Zhang, K.; Shafer, B. M.; Demars, M. D. M., II; Stern, H. A.; Fasan,
R. J. Am. Chem. Soc. 2012, 134, 18695.
(20) (a) Fraunhoffer, K. J.; Bachovchin, D. A.; White, M. C. Org. Lett.
2005, 7, 223. (b) Stang, E. M.; White, M. C. Nat. Chem. 2009, 1, 547.
(c) McMurray, L.; O’Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40,
1885.
D
dx.doi.org/10.1021/ja407388y | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX