11 give, respectively, the corresponding enantiomerically pure allylidene alkyl cyclohexanes in one step.11
Scheme 3 lists a number of relevant examples where this trend is consistently observed, even in the case of a
substituted cyclohexanone (compare Table 1, entry 6).
A
and stereochemical correlation with allylic alcohols obtained
the resulting 4-methyl and cyclohexanone via selective hydroxylation of
followed by oxidative cleavage with periodate and reduction to
It is of interest that with one exception, all the shown in Scheme 3
the
was possible
the
double
allylic alcohol.
attack at the a-position
of the allylic
diene (55%.
to account for the major product. In the case of bulky ketones such as dihydrocarvone, the
was accompanied by another product resulting
attack of the
on the carbonyl
Asymmetric propylidenation of
corresponding to THF,
by NMR to have a de of
-10.0’ 1.03,
was best achieved using the
The crude
Recrystallization from hexane afforded a single isomer, mp.
reagent
was shown
1
then
at
Acknowledgments.
We wish to thank NSERCC, Merck
References
and FCAR for financial assistance and for fellowships to S.B.
Asymmetric Synthesis; Morrison, J. D. Ed., Academic press, New York, 1983-1985, v. 1-5.
For isolated examples of direct asymmetric olefination, see Toda, F.; Akai, H., Org.
Erdelmeier,
H.-J., Am.
1989,
763; Trost, B.M.;
1962.2085;
I
1125; Bestmann, H. J.; Lienert, J.;
1980.102,
Chem., Internat. Edit.,
D.P. J. Am. Chem.
5699;
I.; Janzo, G.
also
R.P.; Foster, A.L.. J. Org.
863; Gais, H.-J.;
Chem.,
3137; Maryanoff.
Reitz,
Rev.,
Schmiedl, G.; Ball, W.A., Terrahedron
1773; Rehwinkel, H.; Skupsch. J.,
G., Chemistry and
Tetrahedron L&t.,
1775;
I.;
For
some indirect methods, see Johnson, C.,R.; Elliott, R.C.; Meanwell,
Tetrahedron
5005; Solladid, G.; Zimmerman, R.; Bartsel R., Synthesis, 1985, 662; Duhamel, L.; Ravard, A.;
Plaquevent, J.-R., Tetrahedron Asym., 1990, I, 347.
3.
4
Hanessian, S.; Delonne, D.; Beaudoin, S.; Lcblanc, Y.; J. Am. Chem.
1984.106, 5754; Chimica
1419.
achii cyclic phosphonamides, see Corey E.J.; Cane, D.E., J. Org.
J.; Kirilov, M., Phosphorus and
studies on stereoselective reactions with phosphorus stabilized carbanions, see Denmark,
S.V., Tetrahedron, R.L.. J. Am. Chem.
112.864.
Hanessian, S.; Bennani, Y.L.; Delorme, D., Tetrahedron
34, 3053; b. Momchilova, S.;
319; c. For
Chatani, N.;
1990,
2191; Denmark, S.E.;
5.
4:
Hanessian, S.; Bennani,
Y.L., Tetrahedron
6465.
Brewster, J.H.; Privett, J.E., J. Am. Chem.
1419.
F.; Beaudoin, S.; Hanessian, S.,
Cryst Section C, in press.
Simard. M.: Beaudoin. S.: Hanessian. S..
Crvst Section C. in
H.M.;
H.M.; Banks, R.B., Banks, M. L.A.; Duraisamy
Walborsky, H.M., J. Am. Chem. 1983.105, 3252.
10. Walborsky, H.M.; Goedken, V.L.; Gawronski. J.K., J. Org.
M.; C.; M.; Salvadori, P., J. Org.
K.;
J. Am.
1987,109, 6719; Walborsky,
1982, I, 667; Duraisamy, M.;
410;
also Ckricuzio,
4346.
11.
For studies with phosphorus stabilized allylic carbanions see Denmark, S.E.; Cramer, C.J. J. Org. Chem.,
1990, 55, 1813; Denmark, S.E.; Rajendra, G.; Marlin, J.E.; Tetrahedron
references cited therein; Evans, D.A.; Hurst, K.M.; Takacs, J.M., J. Am. Chem.
2469 and
3467.
1978,
12. Unless otherwise mentioned, optical rotations were measured at a concentration of 1.0. All products showed
the
analytical and spectroscopic characteristics.
(Received in USA 28 July 1992; accepted 2 September 1992)