Journal of the American Chemical Society
Page 4 of 5
(7) (a) Hoye, T. R.; Baire, B.; Niu, D. W.; Willoughby, P. H.;
apparently fragmentation to the vinyl sulfide 18 is so
rapid5e that it supersedes protonation by the external
protic nucleophile. All told, there is considerable gener-
ality to this process. The preparation of arrays of prod-
ucts from any one benzyne precursor, itself selected
from among multiple options, can be envisioned.
1
2
3
4
Woods, B. P. Nature 2012, 490, 208-212. (b) Baire, B.; Niu, D.;
Willoughby, P. H.; Woods, B. P.; Hoye, T. R. Nature Protocols 2013,
8, 501–508.
(8) For some recent reviews and commentary on aryne chemistry:
(a) Holden, C.; Greaney, M. F. Angew. Chem Int. Ed. 2014, 53, 5746–
5749. (b) Dubrovskiy, A. V.; Markina, N. A.; Larock, R. C. Org.
Biomol. Chem. 2013, 11, 191. (c) Wu, C.; Shi, F. Asian J. Org. Chem.
5
6
7
8
9
In conclusion, we have (i) presented evidence sup-
porting the involvement of initial 1,3-zwitterions in reac-
tions of aliphatic sulfides with benzynes (Figure 2), (ii)
demonstrated the viability of several new modes of trap-
ping reaction (Table 1), (iii) presented two new types of
HDDA-benzynes (21d and 21e, Table 2), and (iv) shown
that three-component reactions that engage HDDA-
benzynes, cyclic sulfides, and a protic nucleophile have
considerable generality.
2013, 2, 116. (d) Peŕez, D. ; Peña, D.; Guitiań, E. Eur. J. Org. Chem.
2013, 5981. (e) Tadross, P. M.; Stoltz, B. M. Chem. Rev. 2012, 112,
3550–3577. (f) Gampe, C. M.; Carreira, E. M. Angew. Chem., Int. Ed.
2012, 51, 3766–3778. (g) Bhunia, A.; Yetra, S. R.; Biju, A. T. Chem.
Soc. Rev. 2012, 41, 3140. (h) Okuma, K. Heterocycles 2012, 85, 515.
(i) Yoshida, H.; Ohshita, J.; Kunai, A. Bull. Chem. Soc. Jpn. 2010, 83,
199. (j) Kitamura, T. Aust. J. Chem. 2010, 63, 987–1001.
(9) (a) Niu, D.; Willoughby, P. H.; Baire, B.; Woods, B. P.; Hoye,
T. R. Nature 2013, 501, 531–534. (b) Hoye, T. R.; Baire, B.; Wang,
T. Chem. Sci. 2014, 5, 545–550. (c) Niu, D.; Wang, T.; Woods, B. P.;
Hoye, T. R. Org. Lett. 2014, 16, 254–257. (d) Willoughby, P. H.; Niu,
D.; Wang, T.; Haj, M. K.; Cramer, C. J.; Hoye, T. R. J. Am. Chem.
Soc. 2014, 136, 13657−13665. (e) Marell, D. J.; Furan, L. R.; Woods,
B. R.; Lei, X.; Bendelsmith, A. J.; Cramer, C. J.; Hoye, T. R.; Ku-
wata, K. T. J. Org. Chem. 2015, 80, 11744–11754.
(10) (a) Yun, S. Y.; Wang, K.; Lee, N.; Mamidipalli, P.; Lee D. J.
Am. Chem. Soc. 2013, 135, 4668−4671. (b) Karmakar, R.; Ma-
midipalli, P.; Yun, S. Y.; Lee, D. Org. Lett. 2013, 15, 1938–1941. (c)
Wang, K.; Yun, S. Y.; Mamidipalli, P.; Lee, D. Chem. Sci. 2013, 4,
3205–3211. (d) Mamidipalli, P.; Yun, S. Y.; Wang, K.; Zhou, T.; Xia,
Y.; Lee, D. Chem. Sci. 2014, 5, 2362-2367. (e) Lee, N.; Yun, S. Y.;
Mamidipalli, P.; Salzman, R. M. Lee, D.; Zhou, T.; Xia, Y. J. Am.
Chem. Soc. 2014, 136, 4363−4368. (f) Karmakar, R.; Yun, S. Y.;
Wang, K.; Lee, D. Org. Lett. 2014, 16, 6-9. (g) Karmakar, R.; Yun, S.
Y.; Chen, J.; Xia, Y.; Lee, D. Angew. Chem. Int. Ed. 2015, 54, 6582-
6586. (h) Karmakar, K.; Ghorai, S.; Xia, Y.; Lee, D. Molecules 2015,
20, 15862-15880.
(11) (a) Vandavasi, J. K.; Hu, W.; Hsiao, C.; Senadia, G. C.; Wang,
J. J. RSC Adv. 2014, 4, 57547–57552. (b) Liang, Y.; Hong, X.; Yu, P.;
Houk, K. N. Org. Lett. 2014, 16, 5702–5705. (c) Nobusue, S.; Yama-
ne, H.; Miyoshi, H.; Tobe, Y. Org. Lett. 2014, 16, 1940–1943. (d)
Kerisit, N.; Toupet, L.; Larini, P.; Perrin, L.; Guillemin, J.; Trolez, Y.
Chem. Eur. J. 2015, 21, 6042–6047. (e) Watanabe, T,; Curran, D. P.;
Taniguchi, T. Org. Lett. 2015, 17, 3450–3453.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information. The Supporting Information is
available free of charge on the ACS Publications website.
Experimental details for the preparation of new compounds; spec-
1
troscopic data for their characterization, including copies of H
and 13C NMR spectra; and computed (DFT) geometries of ben-
zyne intermediates and transition state for ylide formation (PDF).
AUTHOR INFORMATION
Corresponding Author
* hoye@umn.edu
Notes
The authors declare to have no competing financial interests.
ACKNOWLEDGMENT
Support for this research was provided by the National Institutes
of Health (GM65597). V.P. was supported by a Gleysteen-Heisig
fellowship for undergraduate students. NMR spectra were record-
ed using instrumentation purchased with funds provided by the
NIH Shared Instrumentation Grant program (S10OD011952). We
thank Sean Ross and Juntian Zhang for providing samples of and
procedures for preparing tetraynes 13 and precursor to 21c.
(12) (a) Niu, D.; Hoye, T. R. Nature Chem. 2014, 6, 34–40. (b)
Chen, J.; Baire, B.; Hoye, T. R. Heterocycles 2014, 88, 1191–1200.
(c) Woods, B. P.; Baire, B.; Hoye, T. R. Org. Lett. 2014, 16, 4578–
4581. (d) Woods, B. P.; Hoye, T. R. Org. Lett. 2014, 16, 6370–6373.
(e) Pogula, V. D.; Wang, T.; Hoye, T. R. Org. Lett. 2015, 17, 856–
859. (f) Luu Nguyen, Q.; Baire, B.; Hoye, T. R. Tetrahedron Lett.
2015, 56, 3265–3267.
REFERENCES
(13) Roy, T.; Baviskar, D. R.; Biju, A. T. J. Org. Chem. 2015, 80,
11131–11137 and references therein.
(1) (a) Hellmann, H.; Eberle, D. Liebigs Ann. Chem. 1963, 662,
188–201. (b) Franzen, V.; Joschek, H.-I.; Mertz, C. Liebigs Ann.
Chem. 1962, 654, 82–91.
(2) Nakayama, J.; Kumano, Y.; Hoshino, M. Tetrahedron Lett.
1989, 30, 847–850.
(3) Blackburn, G. M.; Ollis, W. D. Chem. Commun. 1968, 1261–
1262.
(4) Xu, H.; Cai, M.; He, W.; Hu, W.; Shen, M. RSC Adv. 2014, 4,
7623–7626.
(5) (a) Summarized (pp 400–406) in Nakayama, J. J. Sulfur Chem.
2009, 30, 393–468. (b) Nakayama, J.; Fujita, T.; Hoshino, M. Chem.
Lett. 1982, 1777–1780. (c) Nakayama, J.; Hoshino, K.; Hoshino, M.
Chem Lett. 1985, 677–678. (d) Iwamura, H.; Iwamura, M.; Nishida,
T.; Yoshida, M.; Nakayama, J. Tetrahedron Lett. 1971, 12, 63–66. (e)
Nakayama, J.; Takeue, S.; Hoshino, M. Tetrahedron Lett. 1984, 25,
2679–2682. (f) Nakayama, J.; Ozasa, H.; Hoshino, M. Heterocycles
1984, 22, 1053–1056.
(14) (a) Hamura, T.; Ibusuki, Y.; Sato, K.; Matsumoto, T.; Osamu-
ra, Y.; Suzuki, K. Org. Lett. 2003, 5, 3551−3554. (b) Cheong, P. H.
Y.; Paton, R. S.; Bronner, S. M.; Im, G.-Y. J.; Garg, N. K.; Houk, K.
N. J. Am. Chem. Soc. 2010, 132, 1267−1269. (c) Garr, A. N.; Luo, D.;
Brown, N.; Cramer, C. J.; Buszek, K. R.; VanderVelde, D. Org. Lett.
2010, 12, 96−99.
(15) Baldwin, J. E.; Hackler, R. E. J. Am. Chem. Soc. 1969, 91,
3646–3647.
(16) Bhakat, S. J. Chem. Pharm. Res. 2011, 3, 115–121.
(17) Brewer, J. P. N.; Heaney, H.; Jablonski, J. M. Tetrahedron
Lett. 1968, 9, 4455–4456.
(18) E.g., the linked sulfide F15845 has been in Phase I and II clin-
ical trials for treatment of angina: (a) Le Grand, B.; Pignier, C.;
Létienne, R.; Cuisiat, F.; Rolland, F.; Mas, A.; Vacher, B. J. Med.
Chem. 2008, 51, 3856–3866. (b)
OMe
H
N
Pignier, C.; Rougier, J.-S.; Vié, B.;
S
O
Culié, C.; Verscheure, Y.; Vacher, B.;
Abriel, H.; Le Grand, B. Brit. J.
Pharmacol. 2010, 161, 79–91.
(6) (a) Bradley, A. Z.; Johnson, R. P. J. Am. Chem. Soc. 1997, 119,
9917-9918. (b) Miyawaki, K.; Suzuki, R.; Kawano, T.; Ueda, I.
Tetrahedron Lett. 1997, 38, 3943-3946.
F15845
S
ACS Paragon Plus Environment