ChemComm
Communication
2005, 44, 2295; (e) H. Garrido-Hernandez, M. Nakadai, M. Vimolratana,
Q. Y. Li, T. Doundoulakis and P. G. Harran, Angew. Chem., Int. Ed.,
2005, 44, 765; ( f ) J. Ewing, G. K. Hughes, E. Ritchie and W. C.
Taylor, Nature, 1952, 169, 618.
2 (a) D. Curran, J. Grimshaw and S. D. Perera, Chem. Soc. Rev., 1991,
20, 391; (b) S. Gabriel, M. Cecius, K. Fleury-Frenette, D. Cossement,
M. Hecq, N. Ruth, R. Jerome and C. Jerome, Chem. Mater., 2007,
19, 2364; (c) S. Z. Pu, G. Liu, L. Shen and J. K. Xu, Org. Lett., 2007,
9, 2139.
3 (a) L. Zeng, E. W. Miller, A. Pralle, E. Y. Isacoff and C. J. Chang,
J. Am. Chem. Soc., 2006, 128, 10; (b) B. R. Clark, R. J. Capon, E. Lacey,
S. Tennant and J. H. Gill, Org. Lett., 2006, 8, 701.
Fig. 3 Transformations of pyrroles.
4 (a) C. F. Lee, L. M. Yang, T. Y. Hwu, A. S. Feng, J. C. Tseng and
T. Y. Luh, J. Am. Chem. Soc., 2000, 122, 4992; (b) A. Kreutzberger and
P. A. Kalter, J. Org. Chem., 1960, 25, 554.
5 (a) Y. Nishibayashi, M. Yoshikawa, Y. Inada, M. D. Milton,
M. Hidai and S. Uemura, Angew. Chem., Int. Ed., 2003, 42, 2681;
(b) O. V. Larionov and A. D. Meijere, Angew. Chem., Int. Ed., 2005,
44, 5664; (c) S. Kamijo, C. Kanazawa and Y. Yamamoto, J. Am. Chem.
´
Soc., 2005, 127, 9260; (d) R. Martın, M. R. Rivero and S. L. Buchwald,
Angew. Chem., Int. Ed., 2006, 45, 7079; (e) E. M. Beck, N. P. Grimster,
R. Hatley and M. J. Gaunt, J. Am. Chem. Soc., 2006, 128, 2528;
( f ) D. S. Cyr and B. A. Arndtsen, J. Am. Chem. Soc., 2007,
129, 12366; (g) S. J. Hwang, S. H. Cho and S. Chang, J. Am. Chem.
Soc., 2008, 130, 16158; (h) X. P. Fu, J. J. Chen, G. Y. Li and Y. H. Liu,
Angew. Chem., Int. Ed., 2009, 48, 5500; (i) M. Fujiwara, M. Kawatsura,
S. Hayase, M. Nanjo and T. Itoha, Adv. Synth. Catal., 2009, 351,
123; ( j) Y. D. Lu and B. A. Arndtsen, Angew. Chem., Int. Ed., 2008,
47, 5430.
6 L. Knorr, Ber. Dtsch. Chem. Ges., 1884, 17, 1635.
Scheme 1 Possible reaction mechanism.
7 (a) Y. J. Kim, J. Kim and S. B. Park, Org. Lett., 2009, 11, 17; (b) J. L.
Bullington, R. R. Wolff and P. F. Jackson, J. Org. Chem., 2002,
67, 9439; (c) K. C. Washizuka, S. Minakata, I. Ryu and M. Komatsu,
Tetrahedron, 1999, 55, 12969.
the desired pyrrole product with the generation of H+, while
CuII was reduced to CuI that could enter into the next catalytic
cycle. Theoretically, the reaction can be redox-neutral, but under
an atmosphere of N2, the yield was only 25%. Up until now the
role of O2 was unknown, however, in this work it has been shown
to promote the reaction significantly. Further mechanistic study
is underway in our laboratory.
´
´
8 (a) V. Estevez, M. Villacampa and J. C. Menendez, Chem. Soc. Rev.,
2010, 39, 4402; (b) G. Balme, Angew. Chem., Int. Ed., 2004, 43,
6238; (c) B. Khalili, P. Jajarmi, B. Eftekhari-Sis and M. M.
Hashemi, J. Org. Chem., 2008, 73, 2090; (d) B. Jiang, Y. Li, M. S. Tu,
S. L. Wang, S. J. Tu and G. G. Li, J. Org. Chem., 2012, 77, 7497.
9 (a) Y. J. Jiang, W. C. Chan and C. M. Park, J. Am. Chem. Soc., 2012,
134, 4104; (b) B. M. Trost, J. P. Lumb and J. M. Azzarelli, J. Am. Chem.
Soc., 2011, 133, 740; (c) Q. Cai, F. T. Zhou, T. F. Xu, L. B. Fu and
K. Ding, Org. Lett., 2011, 13, 340.
In conclusion, a novel and useful method has been developed
to construct highly substituted pyrroles via a copper-catalyzed
coupling reaction of dialkyl acetylenedicarboxylates with oxime
acetates under aerobic conditions. This novel method tolerates a
wide range of functionalities. The newly formed pyrroles bearing
free NH functionalities are easily employed for further trans-
formations to prepare useful pyrrolo[2,1-a]isoquinoline skeletons,
which may find applications in natural product synthesis.
The authors thank the National Natural Science Foundation
of China (20932002, 21172076 and 21202046), the National Basic
Research Program of China (973 Program) (2011CB808600),
Guangdong Natural Science Foundation (10351064101000000),
China Postdoctoral Science Foundation (2012T50673) and the
Fundamental Research Funds for the Central Universities
(2012ZP0003 and 2012ZB0011) for financial support.
10 (a) W. B. Liu, H. F. Jiang and L. B. Huang, Org. Lett., 2010, 12, 312;
(b) R. L. Yan, J. Luo, C. Y. Wang, C. W. Ma, G. S. Huang and
Y. M. Liang, J. Org. Chem., 2010, 75, 5395; (c) B. Li, N. C. Wang,
Y. J. Liang, S. S. Xu and B. Q. Wang, Org. Lett., 2013, 15, 136;
(d) L. Wang and L. Ackermann, Org. Lett., 2013, 15, 176; (e) D. Srimani,
Y. Ben-David and D. Milstein, Angew. Chem., Int. Ed., 2013, 52, 4012;
( f ) K. Iida, T. Miura, J. Ando and S. Saito, Org. Lett., 2013, 15, 1436;
(g) Z. Z. Shi, M. Suri and F. Glorius, Angew. Chem., Int. Ed., 2013,
52, 4892; (h) Z. Y. Chen, B. L. Lu, Z. H. Ding, K. Gao and N. Yoshikai,
Org. Lett., 2013, 15, 1966.
11 T. Gerfaud, L. Neuville and J. Zhu, Angew. Chem., Int. Ed., 2009,
48, 572.
12 Y. C. Tan and J. F. Hartwig, J. Am. Chem. Soc., 2010, 132, 3676.
13 Z. H. Ren, Z. Y. Zhang, B. Q. Yang, Y. Y. Wang and Z. H. Guan,
Org. Lett., 2011, 13, 5394.
14 Y. Wei and N. Yoshikai, J. Am. Chem. Soc., 2013, 135, 3756.
15 (a) L. B. Huang, H. F. Jiang, C. R. Qi and X. H. Liu, J. Am. Chem. Soc.,
2010, 132, 17652; (b) X. W. Li, L. B. Huang, H. J. Chen, W. Q. Wu,
H. W. Huang and H. F. Jiang, Chem. Sci., 2012, 3, 3463; (c) H. F.
Jiang, W. Zeng, Y. B. Li, W. Q. Wu, L. B. Huang and W. Fu, J. Org.
Chem., 2012, 77, 5179; (d) H. W. Huang, X. C. Ji, W. Q. Wu,
L. B. Huang and H. F. Jiang, J. Org. Chem., 2013, 78, 3374.
Notes and references
1 (a) B. M. Trost and G. B. Dong, Org. Lett., 2007, 9, 2357; (b) A. Fu¨erstner, 16 L. Ackermann, L. H. Wang and A. V. Lygin, Chem. Sci., 2012,
Angew. Chem., Int. Ed., 2003, 42, 3582; (c) G. Balme, Angew. Chem., Int. Ed., 3, 177.
2004, 43, 6238; (d) D. E. N. Jacquot and M. Zollinger, Angew. Chem., Int. Ed., 17 T. Fukuda, F. Ishibashi and M. Iwao, Heterocycles, 2011, 83, 491.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 9597--9599 9599