10.1002/anie.201803300
Angewandte Chemie International Edition
COMMUNICATION
6C10H6N≡C + H+, H(C=N-C10H7)1-5C10H6N≡C + H+ respectively
(Figure 3, ESI). Based on these results, a possible carbocationic
polymerization mechanism was suggested in Scheme 1. The
Conflict of interest
The authors declare no conflict of interest.
cation Ph3C+ serves as
a truly cationic initiator for the
Keywords: isocyanide • (co)polymerization • metal-free •
helical-sense-selective • cationic mechanism
polymerization of isocyanides. Moreover, the presence of
C10H6NC end group demonstrates that the termination process
undergoes a C-H activation of one carbon-hydrogen bond on the
ortho-position of the aryl isocyanide monomer. As a result, the
H+ proton is produced as new cationic initiator for further
polymerization of isocyanide in combination with an polymer
chain as Ph3C(C=N-C6H4R)m+1C10H6N≡C. Similarly, the polymer
chains as H(C=N-C6H4R)nC10H6N≡C will also be synthesized in
the following polymerization process. Such C-H activation of aryl
isocyanide monomer has never been observed in the
polymerization of isocyanide by using late transition metal
catalyst, identifying the high catalytic activity of these cationic
initiators.
[1]
For example: a) T. Nakano, Y. Okamoto, Chem. Rev. 2001, 101, 4013-
4038; b) J. G. Rudick, V. Percec, Acc. Chem. Res. 2008, 41, 1641-
1652; c) E. Yashima, N. Ousaka, D. Taura, K. Shimomura, T. Ikai, K.
Maeda, Chem. Rev. 2016, 116, 13752-13990; d) F. Freire, E. Quiꢀoá,
R. Riguera, Chem. Rev. 2016, 116, 1242-1271.
[2]
a) E. Yashima, K. Maeda, Macromolecules 2008, 41, 3-12; b) L. A.
Kane-Maguire, G. G. Wallace, Chem. Soc. Rev. 2010, 39, 2545-2576;
c) L. Yang, Y. Tang, N. Liu, C. Liu, Y. Ding, Z. Wu, Macromolecules
2016, 49, 7692-7702; d) N. Liu, C. Ma, R. Sun, J. Huang, C. Li, Z. Wu,
Polym. Chem. 2017, 8, 2152-2163; e) H. Huang, Y. Yuan, J. Deng,
Macromolecules 2015, 48, 3406-3413.
[3]
[4]
a) E. Schwartz, M. Koepf, H. J. Kitto, R. J. M. Nolte, A. E. Rowan,
Polym. Chem. 2011, 2, 33-47; b) R. J. M. Nolte, Chem. Soc. Rev. 1994,
23, 11−19; c) M. Suginome, Y. Ito, Adv. Polym. Sci. 2004, 171, 77−136.
a) H. G. J. Visser, R. J. M. Nolte, J. W. Zwikker, W. Drenth, J. Org.
Chem. 1985, 50, 3138−3143; b) T. Kajitani, K. Okoshi, E. Yashima,
Macromolecules 2008, 41, 1601−1611; c) S. Asaoka, A. Joza, S.
Minagawa, L. Song, Y. Suzuki, T. Iyoda, ACS Macro. Lett. 2013, 2,
906−911; d) L. Zhou, B. Chu, X. Xu, L. Xu, N. Liu, Z. Wu, ACS Macro.
Lett. 2017, 6, 824−829; e) K. Onitsuka, T. Mori, M. Yamamoto, F. Takei,
S. Takahashi, Macromolecules 2006, 39, 7224−7231.
[5]
[6]
G. Li, Y. Qin, X. Wang, X. Zhao, F. Wang, J. Polym. Res. 2011, 18,
1177-1183.
Figure 3. ESI-MS spectrum of NI oligomer obtained by [Ph3C][B(C6F5)4].
a) Y. Chen, Z. Zhang, X. Han, J. Yin, Z. Wu, Macromolecules 2016, 49,
7718-7727; b) X. Han, J. Zhang, C. Qiao, W. Zhang, J. Yin, Z. Wu,
Macromolecules 2017, 50, 4114-4125; c) G. Schwach, J. Coudane, R.
Engel, M. Vert, Polymer Bulletin 1996, 37, 771-776; d) H. Nishida, M.
Yamashita, M. Nagashima, T. Endo, Y. Tokiwa, J. Polym. Sci., Part A:
Polym. Chem. 2000, 38, 1560-1567.
[7]
a) F. Millich, R. G. Sinclair, Abstracts, 150th National Meeting of the
American Chemical Society, Atlantic City, N.J., Sept 1965; b) F. Millich,
R. G. Sinclair, J. Polymer Sci.: Part C. 1968, 33−43; c) F. Millich, G. K.
Baker, Macromolecules 1969, 2, 122−128; d) R. W. Stackman, J.
Macromol. Sci.: Part A Chem. 1968, A2, 225−236; e) Y. Yamamoto, T.
Takizawa, N. Hagihara, Nippon Kagaku Zasshi, 1966, 87, 1355.
G. A. Metselaar, J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte,
Angew. Chem. Int. Ed. 2005, 44, 1990–1993.
Scheme 1. Possible Carbocationic Polymerization Mechanism.
[8]
[9]
In summary, commercially available [Ph3C][B(C6F5)4] serves
as a highly efficient metal-free cationic initiator for the helical-
sense-selective carbocationic polymerization of chiral aryl
isocyanides and copolymerization with achiral aryl isocyanide
with extremely high activity (up to 107 g of polymer/(molcat.·h)),
affording high molecular weight functional PIs with good
solubility, AIE nature or single-handed helical conformation.
Such highly efficient metal-free catalyst is quite rare for the
polymerization of isocyanides, let alone its high helical sense
selectivity in both polymerization and copolymerization of
isocyanides. Further studies on the (co)polymerization of other
functional isocyanide monomers by use of metal-free borate
catalyst are in progress.
P. M. Zeimentz, S. Arndt, B. R. Elvidge, J. Okuda, Chem. Rev. 2006,
106, 2404−2433.
[10] a) F. Yang, X. Li, J. Polymer Sci.: Part A. Polym. Chem. 2017, 55,
2271−2280; b) X. Yan, S. Zhang, D. Peng, P. Zhang, J. Zhi, X. Wu, L.
Wang, Y. Dong, X. Li, Polym. Chem. 2018, 9, 984–993.
[11] a) Y. Ma, B. Wang, L. Zhang, Z. Hou, J. Am. Chem. Soc. 2016, 138,
3663−3666; b) Z. Yu, Y. Li, J. Shi, B. Ma, L. Liu, J. Zhang, Angew.
Chem. Int. Ed. 2016, 55, 14807–14811; c) Z. Liu, Z. Wen, X. Wang,
Angew. Chem. Int. Ed. 2017, 56, 5817–5820; d) P. Pommerening, J.
Mohr, J. Friebel, M. Oestreich, Eur. J. Org. Chem. 2017, 2312–2316.
[12] F. Takei, H. Hayashi, K. Onitsuka, N. Kobayashi, S. Takahashi, Angew.
Chem. Int. Ed. 2001, 40, 4092−4094.
[13] a) C. Y. K. Chan, J. W. Y. Lam, C. Deng, X. Chen, K. S. Wong, B. Z.
Tang, Macromolecules 2015, 48, 1038−1047; b) J. Mei, N. L. C. Leung,
R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115,
11718−11940.
Acknowledgements
[14] M. Fineman, S. D. Ross, J. Polym. Sci. 1949, 2, 259−265.
[15] F. Takei, K. Onitsuka, S. Takahashi, Polym. J. 2000, 32, 524−526.
Financial support for this work was provided by the National
Natural Science Foundation of China (Nos. 21490570,
21490574, 21774014) and the 111 Project (B07012).
This article is protected by copyright. All rights reserved.