Table 1. Examples of Glycopeptide Mimics Formed Using
Solid-Phase Chemistry Depicted in Figure 1 and “thio”-CD52 as
the Peptide Scaffolda
a Enzymatic transformations can also be carried out on the glycopeptide
products.
Figure 1. Model CD52 study. (a) 10% DTT sat. NH4HCO3/DMF,
24 h, quant. (b) Glycosyl iodoacetamide (3 equiv), DMF, 2.5%
v/v pyridine, 3 h, 95-100%. (c) 95% TFA, 3 h.
the synthesis of peptides containing post-translational modi-
fications such as phosphorylation9 and glycosylation10 that
are not under direct genetic control. We therefore aimed to
widen the scope of the original iodoacetamide method to
include protein semisynthesis. Through chemical synthesis,
it should be trivial to differentiate between cysteines involved
in disulfide bonds and those to be modified by glycosylation
using orthogonally protected cysteine residues. We also
aimed to conduct all reactions and glycopeptide synthesis
on the solid phase using 4-sulfamylbutyryl-AM resin, al-
lowing glycopeptide mimetic R-thioesters to be prepared
using standard Fmoc chemistry.11 This facilitated application
recently this and closely related methodologies have provided
the first examples of homogeneously glycosylated, bacterially
derived proteins. In such cases, the site of modification has
been specifically targeted using a mutagenesis/modification
approach. In this way specific protein glycoforms in the 20-
25 KDa molecular weight range have been prepared.6 The
iodoacetamide methodology may, however, be limited by
obstacles, including incomplete modification of free thiols
on recombinant proteins, which then require further separa-
tion. Furthermore, the introduction of extra cysteine residues
into proteins may not be wholly tolerated, for example, where
the introduction of more than one cysteine residue into a
recombinantly derived protein is desirable, yet the protein
already contains many other cysteine residues normally
involved in disulfide bond formation. These potential limita-
tions have driven the search for a means of expanding the
present methodology.
(8) Muir, T. W.; Sondhi, D.; Cole, P. A. Proc. Natl. Acad. Sci. U.S.A.
1998, 95, 6705. Noren, C. J.; Wang, J. M.; Perler, F. B. Angew. Chem.,
Int. Ed. 2000, 39, 451.
(9) Huse, M.; Holford, M. N.; Kuriyan, J.; Muir, T. W. J. Am. Chem.
Soc. 2000, 122, 8337. Flavell, R. R.; Huse, M.; Goger, M.; Trester-Zedlitz,
M.; Kuriyan, J.; Muir, T. W. Org. Lett. 2002, 4, 165.
(10) Shin, Y.; Winans, K. A.; Backes, B. J.; Kent, S. B. H.; Ellman, J.
A.; Bertozzi, C. R. J. Am. Chem. Soc. 1999, 121, 11684. Winans, K. A.;
King, D. S.; Rao, V. R.; Bertozzi, C. R. Biochemistry 1999, 38, 11700.
Marcaurelle, L. A.; Mizoue, L. S.; Wilken, J.; Oldham, L.; Kent, S. B. H.;
Handel, T. M.; Bertozzi, C. R. Chem. Eur. J. 2001, 7, 1129. Tolbert, T. J.;
Wong, C.-H. J. Am. Chem. Soc. 2000, 122, 5421. Macmillan, D.; Bertozzi,
C. R. Tetrahedron 2000, 56, 9515.
Methods for protein semisynthesis, particularly native
chemical ligation7 and expressed protein ligation8 are par-
ticularly suited to glycoprotein synthesis since they enable
(11) Backes, B. J.; Ellman, J. A. J. Org. Chem. 1999, 64, 2322. Shin,
Y.; Winans, K. A.; Backes, B. J.; Kent, S. B. H.; Ellman, J. A.; Bertozzi,
C. R. J. Am. Chem. Soc. 1999, 121, 11684.
(12) Herzner, H.; Reipen, T.; Schultz, M.; Kunz, H. Chem. ReV. 2000,
100, 4495.
(13) Diekman, A. B.; Norton, E. J.; Klotz, K. L.; Westbrook, V. A.;
Herr, J. C. Immunol. ReV. 1999, 171, 203.
(14) For peptide synthesis, see: Macmillan, D.; Bertozzi, C. R. Tetra-
hedron 2000, 56, 9515.
(15) St Hilaire, P. M.; Meldal, M. Angew. Chem., Int. Ed. 2000, 39,
1163.
(5) Wong, S. Y. C.; Guile, G. R.; Dwek, R. A.; Arsequell, G. Biochem.
J. 1994, 300, 843.
(6) Bill, R. M.; Winter, P. C.; McHale, C. M.; Hodges, V. M.; Elder, G.
E.; Caley, J.; Flitsch, S. L.; Bicknell, R.; Lappin, T. R. J. Biochim. Biophys.
Acta-Gene Struct. Express. 1995, 1261, 35. Davis, B. G. J. Chem. Soc.,
Perkin Trans. 1 1999, 3215. Davis, B. G.; Lloyd, R. C.; Jones, J. B. Bioorg.
Med. Chem. 2000, 8, 1527. Davis, B. G. Chem. Commun. 2001, 351.
Macmillan, D.; Bill, R. M.; Sage, K. A.; Fern, D.; Flitsch, S. L. Chem.
Biol. 2001, 8, 133.
(7) Dawson, P. E.; Kent, S. B. H. Annu. ReV. Biochem. 2000, 69, 923.
1468
Org. Lett., Vol. 4, No. 9, 2002