6
H. Lange, A. Huczko / Chemical Physics Letters 340 -2001) 1±6
Acknowledgements
This work was supported by the Committee for
Scienti®c Research 1KBN) through the Depart-
ment of Chemistry of Warsaw, under grant no. 7
T09A 020 20. Thanks are due to Prof. H. Shino-
hara and Dr. A. Koshio, Department of Chemis-
try, Nagoya University 1Nagoya, Japan) for their
important collaborative MS works.
References
Fig. 5. MS of soot produced under dierent N2 content in
He=N2 mixtures: 0%, 10% and 100%.
[1] H.W. Kroto, R. Heath, S.C. O'Brien, R.F. Curl, R.E.
Smalley, Nature 318 11985) 162.
[2] S. Iijima, Nature 354 11991) 54.
[3] H. Kroto, Angew. Chem. Int. Ed. Engl. 36 11997) 1578.
[4] S.J. Harris, A.M. Weiner, Ann. Rev. Phys. Chem. 36
11985) 31.
It is known that during the arcing of the
graphite in helium not only C60; but also the
higher, mainly C70, fullerenes are formed. There-
fore the relative mass distributions of these species
in the solid products were measured by LD TOF
MS technique. The resulting mass spectra, nor-
malized to the C60 peak, are presented in Fig. 5.
The content of the higher fullerenes, particularly
the so-called `missing fullerenes' C72; C74 and C80
[19], in the case of the pure He arc is, as expected,
low. However, the positive in¯uence of the nitro-
gen on the formation of these species is evident,
and resembles the one observed earlier when an
iron-doped graphite anode was arced in helium
[20]. It is clearly seen that in the presence of ni-
trogen the formation of higher fullerenes is dis-
tinctly enhanced. Thus, one can conclude that
nitrogen atoms or molecules play a role in gener-
ating these, otherwise `missing', fullerene species.
In considering the fullerene composition in the
soot, it has to be kept in mind that the ®nal yields
also depend on the eciency of the extraction
method. The spectral analyses of the toluene ex-
tracts from the collected soot samples did not re-
veal any new absorption features, which could be
assigned to the nitrogen-doped heterofullerenes
[6]. These relatively unstable species, if present,
cannot, however, be extracted by the `conven-
tional' fullerene solvents such as toluene used in
this study.
[5] Y. Saito, M. Inagaki, H. Shinohara, H. Nagashima, M.
Ohkohchi, Y. Ando, Chem. Phys. Lett. 200 11992) 643.
[6] A. Huczko, Full. Sci. Technol. 5 11997) 1091.
[7] H. Lange, K. Saidane, M. Raza®nimanana, A. Gleizes, J.
Phys. D 32 11999) 1024.
[8] A. Huczko, H. Lange, P. Byszewski, M. Popøawska, A.
Starski, J. Phys. Chem. A 101 11996) 1267.
[9] H. Lange, A. Huczko, P. Byszewski, E. Mizera, H.
Shinohara, Chem. Phys. Lett. 289 11998) 174.
[10] Y. Xia, Y. Mu, S. Li, H. Zhang, C. Tan, L. Mei, Nucl.
Instrum. Meth. B 155 11999) 395.
[11] D.V. Afanas'ev, A.A. Bogdanov, G.A. Dyuzev, A.A.
Kruglikov, Mol. Mat. 7 11996) 93.
[12] T. Belz, R. Schlogl, in: H. Kuzmany et al. 1Ed.), Proceed-
ings of the International Winterschool on Fullerenes and
Fullerene Nanostructures, Kirchberg, Austria, 1996, p. 45.
[13] X. Zhao, T. Okazaki, A. Kasuya, H. Shimoyama, Y.
Ando, Jpn. J. Appl. Phys. 38 11999) 6041.
[14] H. Lange, P. Baranowski, A. Huczko, P. Byszewski, Rev.
Sci. Instrum. 68 11997) 3723.
[15] H. Lange, in: M. Hrabovsky, M. Konrad, V. Kopecky
1Eds.), 14th International Symposium on Plasma Chemis-
try, Symposium Proceedings vol. I, Institute of Plasma
Physics, Prague, 1999, p. 221.
[16] Y. Pang Tsui, H.Y. Cheh, Plasma Chem. Plasma Process 2
11982) 387.
[17] J. Abrahamson, Carbon 12 11974) 111.
[18] S.C. Snyder, G.D. Lassahn, L.D. Reynolds, Phys. Rev. E
48 11993) 4124.
[19] T.S.M. Wan, H.-W. Zhang, T. Nakane, Z. Xu, M.
Inakuma, H. Shinohara, K. Kobayashi, S.J. Nagase, Am.
Chem. Soc. 120 11998) 6806.
[20] A. Huczko, H. Lange, T. Sogabe, J. Phys. Chem. A 104
12000) 10708.