The Journal of Organic Chemistry
Article
2-({(S)-2-[(S)-1-(4-Ethoxycarbonylpyridin-2-ylmethyl)-
pyrrolidin-2-yl]pyrrolidin-1-yl}methyl)-4-ethoxycarbonylpyri-
dine (Ligand 3). (S,S)-2,2′-Bipyrrolidine tartrate trihydrate (430 mg,
1.26 mmol) and NaOH (370 mg, 9.2 mmol) were dissolved in a
biphasic mixture of CH2Cl2 (3.3 mL) and water (3.3 mL). To this
mixture was added 4-ethoxycarbonyl-2-chloromethylpyridine hydro-
chloride (710 mg, 3.03 mmol), and the reaction mixture was stirred for
46 h. The resulting mixture was diluted with 1 M NaOH and extracted
with CH2Cl2 (6 × 20 mL). The organic layers were combined, dried
over MgSO4, and filtered, and the solvent was removed. Purification by
column chromatography was carried out on the crude product (SiO2,
CH3CN/MeOH 1/1). After evaporation of the selected fractions
ligand 3 was obtained as a yellow oil (210 mg, 0.45 mmol, 36% yield).
1H NMR (300 MHz, CDCl3, containing a trace of trifluoroacetic acid):
δ 1.40 (t, J = 6 Hz, 6H), 1.76−1.84 (m, 2H), 1.92−1.99 (m, 4H), 2.19
(m, 2H), 3.03 (m, 2H), 3.41 (m, 2H), 3.6 (m, 2H), 4.41 (q, J = 6 Hz,
4H), 4.50 (d, J = 15 Hz, 2H), 4.63 (d, J = 15 Hz, 2H), 7.82 (d, J = 3
Hz, 2H), 8.06 (s, 2H), 8.73 (d, J = 3 Hz, 2H). 13C NMR (300 MHz,
CDCl3, in the presence of a trace of trifluoroacetic acid): δ 14.1, 23.5,
27.8, 54.0, 59.2, 62.0, 66.8, 122.3, 123.8, 138.8, 150.0, 156.3, 164.7.
HRMS (ESI-TOF): calcd for C26H35N4O4 467.2658 (M + H+), found
467.2686. UV−vis: λmax 279 nm (ε = 5095 L mol−1 cm−1).
Oxidation Procedure. In the oxidation of cyclohexane, d-menthyl
acetate, cyclooctene, and 4-bromophenyl methyl sulfide, the complexes
1·Fe(OTf)2, 2·Fe(OTf)2 and 3·Fe(OTf)2 were prepared in situ by
dissolving 2.3 mg (7 μmol) of iron(II) triflate in an acetonitrile
solution (0.066 M) of the given ligand (100 μL, 7 μmol). After 2 min,
to the resulting solutions were added the following: (i) 30 μL of
acetonitrile, 4 μL of AcOH (66 μmol, 50 mol %), 7 μL of PhNO2 used
as an internal standard (66 μmol, 50 mol %), and 12 μL of
cyclohexane (134 μmol, 100 mol %); (ii) 37 μL of acetonitrile, 4 μL of
AcOH (66 μmol, 50 mol %), and 26 mg of d-menthyl acetate (136
μmol, 100 mol %); (iii) 25 μL of acetonitrile, 4 μL of AcOH (66 μmol,
50 mol %), 7 μL of PhNO2 as an internal standard (66 μmol, 50 mol
%), and 17 μL of cyclooctene (134 μmol, 100 mol %); (iv) 4 μL of
AcOH (66 μmol, 50 mol %), 7 μL of PhNO2 as an internal standard
(66 μmol, 50 mol %), and 100 μL of a 1.33 M solution of 4-
bromophenyl methyl sulfide (134 μmol, 100 mol %).
After the addition of the above reagents, 70 μL of a 2.4 M solution
of H2O2 in acetonitrile freshly prepared from commercial 30% aqueous
H2O2 was added by a syringe pump over a period of 2 min, and the
reaction mixture was stirred for an additional 28 min. Then 1.0 mL of
a saturated NaHCO3 solution was added and the mixture was
extracted with Et2O. The organic layer was dried over Na2SO4, filtered,
and analyzed by GC chromatography.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Thanks are due to the Ministero dell’Istruzione, dell’Universita
e della Ricerca (MIUR, PRIN 2010CX2TLM), and the
Consiglio Nazionale delle Ricerche (CNR) for financial
support. This work was also partially supported by the
Dipartimento di Chimica, Sapienza Universita
through the Supporting Research Initiative 2013.
̀
̀
di Roma,
REFERENCES
■
(1) (a) Kaizer, J.; Klinker, E. J.; Oh, N. Y.; Rohde, J.-U.; Song, W. J.;
Stubna, A.; Kim, J.; Munck, E.; Nam, W.; Que, L., Jr. J. Am. Chem. Soc.
̈
2004, 126, 472−473. (b) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev.
2011, 111, 1293−1314. (c) White, M. C. Science 2012, 335, 807−809.
(d) Talsi, E. P.; Bryliakov, K. P. Coord. Chem. Rev. 2012, 256, 1418−
1434.
(2) (a) Que, L., Jr. Acc. Chem. Res. 2007, 40, 493−500. (b) Que, L.,
Jr.; Tolman, W. B. Nature 2008, 455, 333−340.
(3) (a) Fujita, M.; Costas, M.; Que, L., Jr. J. Am. Chem. Soc. 2003,
125, 9912−9913. (b) Nam, W. Acc. Chem. Res. 2007, 40, 522−531.
(c) Yoon, J.; Wilson, S. A.; Yu, K. J.; Seo, M. S.; Nehru, K.; Hedma
Hodgson, K. O.; Bill, E.; Solomon, E. I.; Nam, W. Angew. Chem., Int.
Ed. 2009, 48, 1257−1260. (d) Klinker, E. J.; Shaik, S.; Hirao, H.; Que,
L., Jr. Angew. Chem., Int. Ed. 2009, 48, 1291−1295.
́
(4) (a) Mas-Balleste, R.; Que, L., Jr. J. Am. Chem. Soc. 2007, 129,
15964−15972. (b) White, M. C.; Doyle, A. G.; Jacobsen, E. N. J. Am.
Chem. Soc. 2001, 123, 7194−7195. (c) Wang, Y.; Janardanen, D.;
Usharani, D.; Han, K.; Que, L., Jr.; Shaik, S. ACS Catal. 2013, 3,
1334−1341.
(5) (a) England, J.; Gondhia, R.; Bigorra-Lopez, L.; Petersen, A. R.;
White, A. J. P.; Britovsek, G. J. P. Dalton Trans. 2009, 5319−5334.
́
(b) Gomez, L.; Garcia-Bosch, I.; Company, A.; Benet-Buchholz, J.;
Polo, A.; Sala, X.; Ribas, X.; Costas, M. Angew. Chem., Int. Ed. 2009, 48,
5720−5723.
(6) (a) Hitomi, Y.; Furukawa, S.; Higuchi, M.; Shishido, T.; Tanaka,
T. J. Mol. Catal. A 2008, 288, 83−86. (b) Prat, I.; Company, A.;
Postils, V.; Ribas, X.; Que, L., Jr.; Luis, J. M.; Costas, M. Chem. Eur. J.
2013, 19, 6724−6738. (c) Prat, I.; Font, D.; Company, A.; Junge, K.;
Ribas, X.; Beller, M.; Costas, M. Adv. Synth. Catal. 2013, 355, 947−
956.
In the case of adamantane oxidation, the complexes 1·Fe(OTf)2, 2·
Fe(OTf)2, and 3·Fe(OTf)2 were prepared in situ by dissolving 0.18
mg of iron(II) trifluoromethanesulfonate (0.51 μmol) in an
acetonitrile solution (0.066 M) of the given ligand (7.5 μL, 0.51
μmol). To the resulting solutions were added the following: 10 μL of a
0.5 M AcOH solution in acetonitrile (5 μmol, 50 mol %) and 330 μL
of a 0.033 M solution of adamantane (10 μmol, 100 mol %). After the
addition of the above reagents, 40 μL of a 0.30 M solution of H2O2 in
acetonitrile was added by a syringe pump over a period of 2 min, and
the reaction mixture was stirred for 28 min. Then 10 μL of a 0.50 M
PhCl solution (as an internal standard, 5 μmol, 50 mol %) and 1 mL of
a saturated NaHCO3 were added, and the mixture was extracted with
Et2O. The organic layer was dried over Na2SO4, filtered, and analyzed
by GC chromatography.
(7) (a) Chen, M. S.; White, M. C. Science 2007, 318, 783−787.
(b) Chen, M. S.; White, M. C. Science 2010, 327, 566−571.
(8) Quantitative analysis of the unreacted substrate was problematic
due to the close proximity of cyclohexane and solvent chromato-
graphic peaks.
(9) PDP is the acronym for 2-({(S)-2-[(S)-1-(pyridin-2-ylmethyl)
pyrrolidin-2-yl]pyrrolidin-1-yl}methyl)pyridine.
(10) Asakawa, Y.; Matsuda, R.; Tori, M.; Hashimoto, T.
Phytochemistry 1988, 27, 3861−3869.
(11) (a) Shuman, R. T.; Ornstein, P. L.; Paschal, J. W.; Gesellchen, P.
D. J. Org. Chem. 1990, 55, 738−741. (b) Ochiai, E. J. Org. Chem. 1953,
18, 534−551.
(12) Hom, R. K.; Chi, D. Y.; Katzenellenbogen, J. A. J. Org. Chem.
1996, 61, 2624−2631.
ASSOCIATED CONTENT
■
(13) Kuhler, T. C.; Swanson, M.; Shcherbuchin, V.; Larsson, H.;
̈
S
* Supporting Information
Mellgard, B.; Sjostrom, J.-E. J. Med. Chem. 1998, 41, 1777−1788.
̈
̈
Figures giving the synthetic scheme followed in 2-chlorome-
(14) (a) Zaman, N.; Guillot, R.; Sen
́ ́
echal-David, K.; Boillot, M.-L.
1
thylpyridine derivatives preparation, H and 13C NMR and
Tetrahedron Lett. 2008, 49, 7274−7275.
UV−vis spectra of the new ligands, GC chromatograms and 1H
NMR spectra of selected crude products of some oxidation
reactions. This material is available free of charge via the
(15) Kojima, T.; Hayashi, K.-I.; Iizuka, S.-Y.; Tani, F.; Naruta, Y.;
Kawano, M.; Ohashi, Y.; Hirai, Y.; Ohkubo, K.; Matsuda, Y.;
Fukuzumi, S. Chem. Eur. J. 2007, 13, 8212−8222.
11512
dx.doi.org/10.1021/jo4020744 | J. Org. Chem. 2013, 78, 11508−11512