C.-H. A. Lee, T.-P. Loh / Tetrahedron Letters 47 (2006) 809–812
Table 2. Tandem asymmetric allyl transfer and olefin CM with various
811
Acknowledgements
aldehydes
We are grateful to Nanyang Technological University
and National University of Singapore for their generous
financial support.
O
1) CSA, 25 oC, CH2Cl2
OH
OH
CO2Me
R
H
R
2) 2 (20 mol%)
CO2Me
7
5
1b
Supplementary data
syn/anti = 70:30
Entry RCHO
Time (h) Yield (%)a % eeb
Supplementary data associated with this article can be
O
1
122
126
54
58
94
94
Ph
H
O
2
H
References and notes
O
O
3
126
127
46
46
96
96
1. For reviews on tandem organic reactions, see: (a) Tietze,
L. F. Chem. Rev. 1996, 96, 115–136; (b) Parsons, P. J.;
Penkett, C. S.; Shell, A. J. Chem. Rev. 1996, 96, 195–206;
(c) Ho, T. L. Tandem Organic Reactions; John Wiley &
Sons: New York, 1992, p 1.
2. (a) Louie, J.; Bielawski, C. W.; Grubbs, R. H. J. Am.
Chem. Soc. 2001, 123, 11312–11313; (b) Yu, Q.-S.; Hu,
H.-B.; Pu, L. J. Am. Chem. Soc. 2000, 122, 6500–6501; (c)
Tian, J.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M.
EtO
H
O
4
BnO
H
O
5
150
126
52
50
94
94
BnO
H
O
6
´
Angew. Chem., Int. Ed. 2002, 41, 3636–3638; (d) Toure, B.
BnO
H
T.; Hall, D. G. Angew. Chem., Int. Ed. 2004, 43, 2001–
2004; (e) Zhong, G. Chem. Commun. 2004, 606–607; (f)
Morgan, J. B.; Morken, J. P. Org. Lett. 2003, 5, 2573–
2575; (g) Mikami, K.; Takahashi, K.; Nakai, T.; Uchi-
maru, T. J. Am. Chem. Soc. 1994, 116, 10948–10954; (h)
Waldmann, H.; Braun, M. J. Org. Chem. 1992, 57, 4444–
4451.
a Isolated yield.
b Determined by HPLC analysis using Chiralcel columns or H NMR
analysis of the Mosher acid derivatives. Please refer to the supporting
information.
1
3. (a) Lee, C. L. K.; Lee, C. H. A.; Tan, K. T.; Loh, T. P.
Org. Lett. 2004, 6, 1281–1283; (b) Lee, C. H. A.; Loh, T.
P. Tetrahedron Lett. 2004, 45, 5819–5822.
4. For examples, see: (a) Sumida, S.; Ohga, M.; Mitami, J.;
Nokami, J. J. Am. Chem. Soc. 2000, 122, 1310–1313; (b)
Nokami, J.; Anthony, L.; Sumida, S. Chem. Eur. J. 2000,
6, 2909–2913; (c) Tan, K. T.; Chng, S. S.; Cheng, H. S.;
Loh, T. P. J. Am. Chem. Soc. 2003, 125, 2958–2963.
1) CSA, 25 oC, CH2Cl2
CO2Me
HO
HO
R
O
H
2) 2 (20 mol%)
CO2Me
1c
syn/anti = 64:36
8
9
62% yield, 92% ee
5. For reviews on olefin metathesis, see: (a) Furstner, A.
¨
O
Angew. Chem., Int. Ed. 2000, 39, 3013–3043; (b) Trnka, T.
M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18–29; (c)
Wright, D. L. Curr. Org. Chem. 1999, 3, 211–240; (d)
Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res.
1995, 29, 446–452; (e) Grubbs, R. H.; Chang, S. Tetra-
hedron 1998, 54, 4413–4450.
O
O
OH
O
O
Grahamimycin A
6. For general reviews on olefin cross metathesis, see: (a)
Weeresakare, G. M.; Liu, Z.; Rainier, J. D. Org. Lett.
2004, 6, 1625–1627; (b) Blackwell, H. E.; OÕLeary, D. J.;
Chatterjee, A. K.; Washenfelder, R. A.; Bussmann, D. A.;
Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 58–71; (c)
Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R.
H. J. Am. Chem. Soc. 2003, 125, 11360–11370; (d) Smith,
A. B., III; Adams, C. M.; Kozmin, S. A. J. Am. Chem.
Soc. 2001, 123, 990–991; (e) Connon, S. J.; Blechert, S.
Angew. Chem., Int. Ed. 2003, 42, 1900–1923; (f) Hoveyda,
A. H.; Gillingham, D. G.; Van Veldhuizen, J. J.; Kataoka,
O.; Garber, S. B.; Kingsbury, J. S.; Harrity, P. A. Org.
Biomol. Chem. 2004, 2, 8–23; (g) Cossy, J.; BouzBouz, S.;
Hoveyda, A. H. J. Organomet. Chem. 2001, 624, 327–332;
(h) Cossy, J.; BouzBouz, S.; Hoveyda, A. H. J. Organo-
met. Chem. 2001, 634, 216–221.
Scheme 3. Synthesis of homoallylic alcohol 8.
and cross olefin metathesis reaction,10 producing linear
homoallylic alcohols in good yields and excellent enantio-
selectivities. In all cases, the reactions are controlled by
the ordered additions of reagents and catalysts, thus
making it a versatile approach for many synthetic reac-
tions. In this one-pot reaction, no protection of the
hydroxyl group is required and selective cross-coupling
metathesis is achieved (Table 2, entry 3). The procedure
made use of the more reactive product as compared to
starting materials (<5% undesired by-product observed).
Furthermore, the protocol can be applied to low boiling
point compounds as demonstrated in the short synthesis
of alcohol 8,11 a key intermediate in the synthesis of
grahamimycin A.
7. Only the E isomer was obtained as observed from
1H NMR data.
8. Gurusiddaiah, S.; Ronald, R. C. Antimicrob. Agents
Chemother. 1981, 19, 153–155.