ACS Chemical Biology
Articles
(8) Thaker, H. D., Som, A., Ayaz, F., Lui, D. H., Pan, W. X., Scott, R.
W., Anguita, J., and Tew, G. N. (2012) Synthetic mimics of
antimicrobial peptides with immunomodulatory responses. J. Am.
Chem. Soc. 134, 11088−11091.
(24) Som, A., Navasa, N., Percher, A., Scott, R. W., Tew, G. N., and
Anguita, J. (2012) Identification of synthetic host defense peptide
mimics that exert dual antimicrobial and anti-inflammatory activities.
Clin. Vaccine Immunol. 19, 1784−1791.
(25) Niu, Y., Wu, H., Li, Y., Hu, Y., Padhee, S., Li, Q., Cao, C., and
Cai, J. (2013) AApeptides as a new class of antimicrobial agents. Org.
Biomol. Chem. 11, 4283−4290.
(9) Karlsson, A. J., Pomerantz, W. C., Weisblum, B., Gellman, S. H.,
and Palecek, S. P. (2006) Antifungal activity from 14-helical beta-
peptides. J. Am. Chem. Soc. 128, 12630−12631.
(26) Niu, Y., Wang, R. E., Wu, H., and Cai, J. (2012) Recent
development of small antimicrobial peptidomimetics. Future Med.
Chem. 4, 1853−1862.
(27) Zavascki, A. P., Goldani, L. Z., Li, J., and Nation, R. L. (2007)
Polymyxin B for the treatment of multidrug-resistant pathogens: A
critical review. J. Antimicrob. Chemother. 60, 1206−1215.
(28) Weis, F., Beiras-Fernandez, A., and Schelling, G. (2008)
Daptomycin, a lipopeptide antibiotic in clinical practice. Curr. Opin.
Invest. Drugs 9, 879−884.
(29) Ge, Y., MacDonald, D. L., Holroyd, K. J., Thornsberry, C.,
Wexler, H., and Zasloff, M. (1999) In vitro antibacterial properties of
pexiganan, an analog of magainin. Antimicrob. Agents Chemother. 43,
782−788.
(30) Wu, G., Abraham, T., Rapp, J., Vastey, F., Saad, N., and Balmir,
E. (2011) Daptomycin: Evaluation of a high-dose treatment strategy.
Int. J. Antimicrob. Agents. 38, 192−196.
(31) Vaara, M. (2013) Novel derivatives of polymyxins. J. Antimicrob.
Chemother. 68, 1213−1219.
(32) Mookherjee, N., Brown, K. L., Bowdish, D. M. E., Doria, S.,
Falsafi, R., Hokamp, K., Roche, F. M., Mu, R. X., Doho, G. H., Pistolic,
J., Powers, J. P., Bryan, J., Brinkman, F. S. L., and Hancock, R. E. W.
(2006) Modulation of the TLR-mediated inflammatory response by
the endogenous human host defense peptide LL-37. J. Immunol. 176,
2455−2464.
(33) Cheng, K., Wang, X. H., and Yin, H. (2011) Small-molecule
inhibitors of the TLR3/dsRNA complex. J. Am. Chem. Soc. 133, 3764−
3767.
(34) Slivka, P. F., Shridhar, M., Lee, G. I., Sammond, D. W.,
Hutchinson, M. R., Martinko, A. J., Buchanan, M. M., Sholar, P. W.,
Kearney, J. J., Harrison, J. A., Watkins, L. R., and Yin, H. (2009) A
Peptide Antagonist of the TLR4-MD2 Interaction. ChemBioChem 10,
645−649.
(35) Zhang, S. T., Cheng, K., Wang, X. H., and Yin, H. (2012)
Selection, synthesis, and anti-inflammatory evaluation of the arylidene
malonate derivatives as TLR4 signaling inhibitors. Bioorg. Med. Chem.
20, 6073−6079.
(36) Locksley, R. M., Killeen, N., and Lenardo, M. J. (2001) The
TNF and TNF receptor superfamilies: Integrating mammalian biology.
Cell 104, 487−501.
(37) Sabry, A., Sheashaa, H., El-husseini, A., Mahmoud, K.,
Eldahshan, K. F., George, S. K., Abdel-Khalek, E., El-Shafey, E. M.,
and Abo-Zenah, H. (2006) Proinflammatory cytokines (TNF-alpha
and IL-6) in Egyptian patients with SLE: Its correlation with disease
activity. Cytokine 35, 148−153.
(38) Hutchinson, M. R., Zhang, Y. N., Brown, K., Coats, B. D.,
Shridhar, M., Sholar, P. W., Patel, S. J., Crysdale, N. Y., Harrison, J. A.,
Maier, S. F., Rice, K. C., and Watkins, L. R. (2008) Non-stereoselective
reversal of neuropathic pain by naloxone and naltrexone: involvement
of toll-like receptor 4 (TLR4). Eur. J. Neurosci. 28, 20−29.
(10) Karlsson, A. J., Pomerantz, W. C., Neilsen, K. J., Gellman, S. H.,
and Palecek, S. P. (2009) Effect of sequence and structural properties
on 14-helical beta-peptide activity against Candida albicans planktonic
cells and biofilms. ACS Chem. Biol. 4, 567−579.
(11) Karlsson, A. J., Flessner, R. M., Gellman, S. H., Lynn, D. M., and
Palecek, S. P. (2010) Polyelectrolyte multilayers fabricated from
antifungal beta-peptides: Design of surfaces that exhibit antifungal
activity against Candida albicans. Biomacromolecules 11, 2321−2328.
(12) Huang, M. L., Shin, S. B., Benson, M. A., Torres, V. J., and
Kirshenbaum, K. (2012) A comparison of linear and cyclic peptoid
oligomers as potent antimicrobial agents. ChemMedChem 7, 114−122.
(13) Chongsiriwatana, N. P., Patch, J. A., Czyzewski, A. M., Dohm,
M. T., Ivankin, A., Gidalevitz, D., Zuckermann, R. N., and Barron, A. E.
(2008) Peptoids that mimic the structure, function, and mechanism of
helical antimicrobial peptides. Proc. Natl. Acad. Sci. U. S. A. 105, 2794−
2799.
(14) Claudon, P., Violette, A., Lamour, K., Decossas, M., Fournel, S.,
Heurtault, B., Godet, J., Mely, Y., Jamart-Gregoire, B., Averlant-Petit,
M. C., Briand, J. P., Duportail, G., Monteil, H., and Guichard, G.
(2010) Consequences of isostructural main-chain modifications for the
design of antimicrobial foldamers: Helical mimics of host-defense
peptides based on a heterogeneous amide/urea backbone. Angew.
Chem., Int. Ed. 49, 333−336.
(15) Hua, J., Scott, R. W., and Diamond, G. (2010) Activity of
antimicrobial peptide mimetics in the oral cavity. II. Activity against
periopathogenic biofilms and anti-inflammatory activity. Mol. Oral
Microbiol. 25, 426−432.
(16) Hua, J., Yamarthy, R., Felsenstein, S., Scott, R. W., Markowitz,
K., and Diamond, G. (2010) Activity of antimicrobial peptide mimetics
in the oral cavity: I. Activity against biofilms of Candida albicans. Mol.
Oral Microbiol. 25, 418−425.
(17) Srinivas, N., Jetter, P., Ueberbacher, B. J., Werneburg, M., Zerbe,
K., Steinmann, J., Van der Meijden, B., Bernardini, F., Lederer, A.,
Dias, R. L., Misson, P. E., Henze, H., Zumbrunn, J., Gombert, F. O.,
Obrecht, D., Hunziker, P., Schauer, S., Ziegler, U., Kach, A., Eberl, L.,
Riedel, K., DeMarco, S. J., and Robinson, J. A. (2010) Peptidomimetic
antibiotics target outer-membrane biogenesis in Pseudomonas
aeruginosa. Science 327, 1010−1013.
(18) Obrecht, D., Robinson, J. A., Bernardini, F., Bisang, C.,
DeMarco, S. J., Moehle, K., and Gombert, F. O. (2009) Recent
progress in the discovery of macrocyclic compounds as potential anti-
infective therapeutics. Curr. Med. Chem. 16, 42−65.
(19) Niu, Y., Padhee, S., Wu, H., Bai, G., Harrington, L., Burda, W.
N., Shaw, L. N., Cao, C., and Cai, J. (2011) Identification of gamma-
AApeptides with potent and broad-spectrum antimicrobial activity.
Chem. Commun. 47, 12197−12199.
(20) Padhee, S., Hu, Y., Niu, Y., Bai, G., Wu, H., Costanza, F., West,
L., Harrington, L., Shaw, L. N., Cao, C., and Cai, J. (2011) Non-
hemolytic alpha-AApeptides as antimicrobial peptidomimetics. Chem.
Commun. 47, 9729−9731.
(21) Hu, Y., Amin, M. N., Padhee, S., Wang, R., Qiao, Q., Ge, B., Li,
Y., Mathew, A., Cao, C., and Cai, J. (2012) Lipidated Peptidomimetics
with Improved Antimicrobial Activity. ACS Med. Chem. Lett. 3, 683−
686.
(22) Wu, H., Niu, Y., Padhee, S., Wang, R. E., Li, Y., Qiao, Q., Ge, B.,
Cao, C., and Cai, J. (2012) Design and synthesis of unprecedented
cyclic gamma-AApeptides for antimicrobial development. Chem. Sci. 3,
2570−2575.
(23) Niu, Y., Padhee, S., Wu, H., Bai, G., Qiao, Q., Hu, Y.,
Harrington, L., Burda, W. N., Shaw, L. N., Cao, C., and Cai, J. (2012)
Lipo-gamma-AApeptides as a New Class of Potent and Broad-
Spectrum Antimicrobial Agents. J. Med. Chem. 55, 4003−4009.
217
dx.doi.org/10.1021/cb4006613 | ACS Chem. Biol. 2014, 9, 211−217