10.1002/asia.202101019
Chemistry - An Asian Journal
COMMUNICATION
[2]
[3]
a) L. F. Fieser, M. Fieser, in: Steroids, Reinhold Publishing, New York,
1959, p. 600; b) F.A. Davis, B.C. Chen, Chem. Rev. 1992, 92, 919–
934; c) A.E. Weber, M.G. Steiner, P.A. Krieter, A. E. Colletti, J. R. Tata,
T. A. Halgren, R. G. Ball, J. J. Doyle, T. W. Schorn, J. Med. Chem.
1992, 35, 3755–3773.
The proposed mechanism is supported by the following
mechanistic study. When the reaction was conducted in the
presence of galvinoxyl as a radical scavenger, the yield of
product was largely decreased, and intermediate radical B was
trapped by the addition of galvinoxyl radical; this adduct 5 was
confirmed by ESI–MS (Scheme 3a). Intermediate C was also
observed by ESI–MS (Scheme 3b,6), but its isolation was
difficult due to its facile hydrolysis to afford final product 2.
a) H. Liu, C. Dong, Z. G. Zhang, P. Y. Wu, X. F. Jiang, Angew. Chem.,
Int. Ed., 2012, 51, 12570; b) S. Matsunaga, N. Kumagai, S. Harada, M.
Shibasaki, J. Am. Chem. Soc. 2003, 125, 4712-4713; c) B. M. Trost, J.
Jaratjaroonphong, V. Reutrakul, J. Am. Chem. Soc. 2006, 128, 2778–
2779. d) T. Ohkuma, N. Utsumi, M. Watanabe, K. Tsutsumi, N. Arai, K.
Murata, Org. Lett. 2007, 9, 2565–2567; e) Y. Zhang, L. He, L. Shi, Adv.
Synth. Catal. 2018, 360, 1926–1931.
Scheme 3. Detection of reaction intermediate by ESI–MS.
[4]
a) G. J. Chuang, W. Wang, E. Lee, T. Ritter, J. Am. Chem. Soc., 2011,
133, 1760–1762; b) Y. F. Liang, N. Jiao, Angew. Chem., Int. Ed., 2014,
53, 548–552; c) A. S.-K. Tsang, A. Kapat, F. Schoenebeck, J. Am.
Chem. Soc., 2016, 138, 518–526; d) M. B. Chaudhari, Y. Sutar, S.
Malpathak, A. Hazra, B. Gnanaprakasam, Org. Lett., 2017, 19, 3628–
3631; e) J. Yang, D. Xie, H. Zhou, S. Chen, C. Huo, Z. Li, Org. Chem.
Front., 2018, 5, 1325–1329; f) F. Liang, K. Wu, S. Song, X Li, X Huang,
N. Jiao, Org.Lett. 2015, 17, 876−879; g) S.-B. D. Sim, M. Wang, Y.
Zhao, ACS Catal., 2015, 5, 3609–3612.
[Fe(TPP)]OMs (10 mol%)
HBpin (1.5 eq)
Galvinoxyl (2 eq)
O
(a)
toluene, air, r.t., 3 h
(air = O2 21 vol% / N2 78% vol%)
Galvinoxyl
3a
5
found 591.3811
calcd for C39H52O3Na
[M+Na]+ 591.3809.
[Fe(TPP)]OMs (10 mol%)
HBpin (1.5 eq)
O
[5]
[6]
a) R. S. Menon, A. T. Biju, V. Nair, Beilstein J. Org. Chem. 2016, 12,
444–461; b) N. Kuhl, F. Glorius, Chem.Commun., 2011, 47, 573–575;
c) M. Y. Jin, S. M. Kim, H. Han, D. H. Ryu, J. W. Yang, Org. Lett. 2011,
13, 880–883; d) S. M. Langdon, C. Y. Legault, M. Gravel. J. Org. Chem.
2015, 80, 3597–3610.
(b)
toluene, air, r.t., 3 h
(air = O2 21 vol% / N2 78% vol%)
O
O
B
O
3a
6
a) H. Hanaoka, T. Naota, S.-I. Murahashi, Chem. Lett. 1993, 22, 1767–
1770; b) T. Takai, T. Yamada, T. Mukaiyama, Chem. Lett. 1992, 20,
1499–1502; c) S.-I. Murahashi, T. Saito, H. Hanaoka, Y. Murakami, T.
Naota, H. Kumobayashi, S. Akutagawa, J. Org. Chem. 1993, 58, 2929–
2930; d) B. Plietker, J. Org. Chem. 2003, 68, 7123-7125; e) Y. Zhang, Z.
Shen, J. Tang, Y. Zhang, L. Kong, Y. Zhang, Org. Biomol. Chem., 2006,
4, 1478–1482; f) J. Huang, J. Li, J. Zheng, W. Wu, W. Hu, L. Ouyang, H.
Jiang, Org. Lett. 2017, 19, 3354−3357.
found 313.1585
calcd for C16H23BO4Na
[M+Na]+ 313.1582.
In summary, we report the first example of the aerobic direct
dioxygenation of alkynes to yield α-hydroxyketones. The
reaction proceeds in the presence of oxygen in air as a green
oxidant and an iron catalyst at room temperature. The protocol,
with its high chemoselectivity and functional group tolerance.
Efforts to expand the scope of the alkyne substrates and further
application of this reaction are now in progress.
[7]
[8]
[9]
X. Wu, Q. Gao, M. Lian, S. Liu, A. Wu, RSC Adv., 2014, 4, 51180–
51183.
B. N. Patil, J. J. Lade, A. A. Parab, P. A. Sathe, K. S. Vadagaonkar, A.
C. Chaskar, Tetrahedron Lett. 2019, 60, 1788–1791.
a) K. L. Reed, J. T. Gupton, K. L. McFarlane, Synth. Commun. 1989, 19,
2595–2602; b) M. S. Yusubov, G. A. Zholobova, I. L. Filimonova, K.-W.
Chi, Russ. Chem. Bull., Int. Ed., 2004, 53, 1735–1742; c) D.-L. Mo, L.-X.
Dai, X.-L. Hou, Tetrahedron Lett. 2009, 50, 5578–5581. d) G. Deng, J.
Luo, Tetrahedron 2013, 69, 5937–5944; e) B. T. V. Srinivas, V. S.
Rawat, B. Sreedhar, Adv. Synth. Catal, 2015, 357, 3587–3596.
Acknowledgements
This work was supported by Grants-in-Aid for Scientific
Research (Nos. 20H02737, 18H04253, and 17KT0006) from
MEXT (Japan). Part of this study was performed at the BL14B2
beamline of the SPring-8 synchrotron radiation facility (Proposal
Nos. 2015B1770, 2019A1712, 2019B1842, 020A1624,
2020A1766, and 2021B1720).
[10] a) Z. Shi, C. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev., 2012, 41,
3381–3430; b) F. Puls, H.-J. Knölker, Angew. Chem., Int. Ed., 2018, 57,
1222–1226.
[11] For selected examples of alkyne oxidation by molecular oxygen, see: a)
W. Wu, H. Jiang, Acc. Chem. Res. 2012, 45, 1736–1748; b) W. Ren, Y.
Xia, S.-J. Ji, Y. Zhang, X. Wan, J. Ziao, Org. Lett., 2009, 11, 1841–
1844; c) Q. Lu, J. Zhang, G. Zhao, Y. Qi, H. Wang, A. Lei, J. Am. Chem.
Soc. 2013, 135, 11481–11484; d)X. Liu, T. Cong, P. Liu, P. Sun, J. Org.
Chem. 2016, 81, 7256–7261.
Supporting Information
[12] Q. Lu, J. Zhang, G. Zhao, Y. Qi, H. Wang, A. Lei, J. Am. Chem. Soc.,
2013, 135, 11481–11484.
Experimental procedures, spectroscopic and analytical data for
new compounds, and additional experimental data. This
material is available free of charge via the Internet.
[13] a) M. Isin, F. P. Guengerich, Biochim. Biophys. ActaGen. 2007, 3, 314–
329; b) Ortiz de Montellano, P. R. De Voss, J. J, Nat. Prod. Rep. 2002,
19, 477–493; c) M. Sono, M. P. Roach, E. D. Coulter, J. H. Dawson,
Chem. Rev. 1996, 96, 2841–2888; d) I. Bauer, H.-J. Knölker, Chem.
Rev. 2015, 115, 3170–3387.
Keywords: oxidation • alkyne • α-hydroxyketone • ferric
porphyrin complex • compound 0
[14] K. Kimura, S. Murano, T. Kurahashi, S. Matsubara, Bull. Chem. Soc. Jp.
2021, 94, just accepted (https://doi.org/10.1246/bcsj.20210242).
[15] M. A. Salomon, T. Braun, A. Penner, Angew. Chem. Int. Ed. 2008, 47,
8867–8871.
[1]
a) F. C. Chen, C. F. Peng, I.L. Tsai, I.S. Chen, J. Nat. Prod. 2005, 68,
1318-1323; b) S. K. Wang, M. J. Huang, C. Y. Duh, J. Nat. Prod, 2006,
69, 1411–1416; c) R. Liu, Z. Lin, T. Zhu, Y. Fang, Q. Gu, W. Zhu, J. Nat.
Prod. 2008, 71, 1127–1132.
[16] B. Liu, F. Jin, T. Wang, X. Yuan, W. Han, Angew. Chem., Int. Ed., 2017,
56, 12712–12717.
This article is protected by copyright. All rights reserved.