Chemical Stability and Fate of Ifosfamide
J ournal of Medicinal Chemistry, 1999, Vol. 42, No. 14 2559
P a tien ts’ u r in e: 31P NMR analysis was carried out directly
on urine without any extraction. For patients treated with IF,
crude (i.e., nonconcentrated) urine samples were analyzed,
whereas they were concentrated from 20 to 6 mL for patients
treated with CP as these patients exhibited a marked diuresis
(2.5-7.9 L/day).
(21) Radford, J . A.; Margison, J . M.; Swindell, R.; Lind, M. J .;
Wilkinson, P. M.; Thatcher, N. The stability of ifosfamide in
aqueous solution and its suitability for continuous 7-day infusion
by ambulatory pump. Cancer Chemother. Pharmacol. 1990, 26,
144-146.
(22) Kaijser, G. P.; Beijnen, J . H.; Bult, A.; Hogeboom, M. H.;
Underberg, W. J . M. A systematic study on the chemical stability
of ifosfamide. J . Pharm. Biomed. Anal. 1991, 9, 1061-1067.
(23) Mun˜oz, M.; Girona, V.; Pujol, M.; Dura´n, S.; Vicente, P.; Sole´,
L. A. Stability of ifosfamide in 0.9% sodium chloride solution or
water for injection in a portable i.v. pump cassette. Am. J . Hosp.
Pharm. 1992, 49, 1137-1139.
(24) Mun˜oz, M.; Bonjoch, J .; Prat, J .; Pujol, M.; Girona, V.; de Bolos,
J . Degradation kinetics of ifosfamide in aqueous solution, Int.
J . Pharm. 1996, 139, 249-253.
(25) Leone, L.; Comandone, A.; Oliva, C.; Bussi, P.; Goffredo, F.;
Bretti, S.; Bumma, C. Stability of ifosfamide in solutions for
multiday infusion by external pump. Anti-Cancer Drugs 1995,
6, 604-607.
(26) Highley, M. S.; Momerency, G.; Van Cauwenberghe, K.; Van
Oosterom, A. T.; de Bruijn, E. A.; Maes, R. A. A.; Blake, P.;
Mansi, J .; Harper, P. G. Formation of chloroethylamine and 1,3-
oxazolidine-2-one following ifosfamide administration in hu-
mans. Drug Metab. Dispos. 1995, 23, 433-437.
(27) Hill, S.; Aexiou, J .; Kavanagh, P. E.; Livingstone, P. C.; Shalliker,
R. A.; Soscic, J . Separation of ifosfamide and its degradation
products using micellar electrokinetic chromatography. Anal.
Commun. 1996, 33, 235-237.
(28) Gilard, V.; Martino, R.; Malet-Martino, M. C.; Kutscher, B.;
Mu¨ller, A.; Niemeyer, U.; Pohl, J .; Polymeropoulos, E. E.
Chemical and biological evaluation of hydrolysis products of
cyclophosphamide. J . Med. Chem. 1994, 37, 3986-3993.
(29) Dermer, O. C.; Ham, G. E. Ethylenimine and other aziridines;
Academic Press: New York, 1969.
Ack n ow led gm en t. This work was supported by
grants from the Association pour la Recherche sur le
Cancer (Grant 6635) and the Ligue Nationale Franc¸aise
contre le Cancer. The authors wish to thank Drs. J ean-
Claude Micheau, Dominique Lavabre, and Ve´ronique
Pimienta for helpful discussions on the kinetics.
Refer en ces
(1) Connors, T. A.; Cox, P. J .; Farmer, P. B.; Foster, A. B.; J arman,
M. Some studies of the active intermediates formed in the
microsomal metabolism of cyclophosphamide and isophospha-
mide. Biochem. Pharmacol. 1974, 23, 115-129.
(2) Sladek, N. E. Metabolism of oxazaphosphorines. Pharmacol.
Ther. 1988, 37, 301-355.
(3) Lind, M. J .; Ardiet, C. Pharmacokinetics of alkylating agents.
Cancer Surveys 1993, 17, 157-188.
(4) Sladek, N. E. Metabolism and pharmacokinetics behavior of
cyclophosphamide and related oxazaphosphorines. In Anticancer
Drugs: Reactive metabolism and drug interactions; Powis, G.,
Ed.; Pergamon Press: Oxford, 1994; pp 79-156.
(5) Kaijser, G. P.; Beijnen, J . H.; Bult, A.; Underberg, W. J . M.
Ifosfamide metabolism and pharmacokinetics. Anticancer Res.
1994, 14, 517-532.
(6) Wagner, T. Ifosfamide clinical pharmacokinetics. Clin. Phar-
macokinet. 1994, 26, 439-456.
(30) The 31P chemical shifts for the degradation compounds of IF and
its dechloroethylated metabolites are pH-dependent since their
phosphorus atom is directly linked to protonation sites such as
amino and/or hydroxyl groups. To determine if the compounds
resulting from the hydrolysis of DDCIF, 2DCIF, 3DCIF, and IF
had identical structures, all the degradation mixtures obtained
were systemically spiked by aliquots of the other degradation
mixtures and their 31P NMR spectra recorded. The compounds
which exhibited a single 31P signal were assumed to have the
same structures. This assumption was then checked by compar-
ing their 13C NMR spectra.
(31) Yonezawa, T.; Morishima, I.; Fukuta, K. Solvent effects in NMR
spectroscopy. II. A repulsive interaction between the benzene
solvent molecule and the nitrogen lone-pair, and the effects
induced by the addition of protic substances. Bull. Chem. Soc.
J pn. 1968, 41, 2297-2305.
(7) Norpoth, K. Studies on the metabolism of isophosphamide in
man. Cancer Treat. Rep. 1976, 60, 437-443.
(8) Martino, R.; Crasnier, F.; Chouini-Lalanne, N.; Gilard, V.;
Niemeyer, U.; de Forni, M.; Malet-Martino, M. C. A new approch
to the study of ifosfamide metabolism by the analysis of human
body fluids with 31P nuclear magnetic resonance spectroscopy.
J . Pharmacol. Exp. Ther. 1992, 260, 1133-1144.
(9) Gilard, V.; Malet-Martino, M. C.; de Forni, M.; Niemeyer, U.;
Ader, J . C.; Martino, R. Determination of the urinary excretion
of ifosfamide and its phosphorated metabolites by phosphorus-
31 nuclear magnetic resonance spectroscopy. Cancer Chemother.
Pharmacol. 1993, 31, 387-394.
(10) Wang, J . J . H.; Chan, K. K. Identification of new metabolites of
ifosfamide in rat urine using ion cluster technique. J . Mass
Spectrom. 1995, 30, 675-683.
(11) Goren, M. P.; Wright, R. K.; Pratt, C. B.; Pell, F. E. Dechloro-
ethylation of ifosfamide and neurotoxicity. Lancet II 1986, 1219.
(12) Pohl, J .; Stekar, J .; Hilgard, P. Chloroacetaldehyde and its
contribution to urotoxicity during treatment with cyclophospha-
mide or ifosfamide. Arzneim. Forsch. 1989, 39, 704-705.
(13) J oqueviel, C.; Malet-Martino, M.; Martino, R. A 13C NMR study
of 2-13C-chloroacetaldehyde, a metabolite of ifosfamide and
cyclophosphamide, in the isolated perfused rabbit heart model.
Initial observations on its cardiotoxicity and cardiac metabolism.
Cell. Mol. Biol. 1997, 43, 773-782.
(14) Kurowski, V.; Wagner, T. Comparative pharmacokinetics of
ifosfamide, 4-hydroxyifosfamide, chloroacetaldehyde, and 2- and
3-dechloroethylifosfamide in patients on fractionated intrave-
nous ifosfamide therapy. Cancer Chemother. Pharmacol. 1993,
33, 36-42.
(15) Kaijser, G. P.; Beijnen, J . H.; J eunink, E. L.; Bult, A.; Keizer,
H. J .; de Kraker, J .; Underberg, W. J . M. Determination of
chloroacetaldehyde, a metabolite of oxazaphosphorine cytostatic
drugs, in plasma. J . Chromatogr. 1993, 614, 253-259.
(16) Kaijser, G. P.; Korst, A.; Beijnen, J . H.; Bult, A.; Underberg, W.
J . M. The analysis of ifosfamide and its metabolites. Anticancer
Res. 1993, 13, 1311-1324.
(17) Momerency, G.; Van Cauwenberghe, K.; de Bruijn, E. A.; Van
Oosterom, A. T.; Highley, M. S.; Harper, P. G. Determination of
iphosphamide and seven metabolites in blood plasma, as stable
trifluoroacetyl derivatives, by electron capture chemical ioniza-
tion GC-MS. J . High Resolut. Chromatogr. 1994, 17, 655-661.
(18) Kaijser, G. P.; Aalbers, T.; Beijnen, J . H.; Bult, A.; Underberg,
W. J . M. Chemical stability of cyclophosphamide, trofosfamide,
and 2- and 3-dechloroethylifosfamide in aqueous solutions. J .
Oncol. Pharm. Pract. 1996, 2, 15-21.
(19) Zon, G.; Ludeman, S. M.; Egan, W. High-resolution nuclear
magnetic resonance investigations of the chemical stability of
cyclophosphamide and related phosphoramidic compounds. J .
Am. Chem. Soc. 1977, 99, 5785-5795.
(20) Trissel, L. A.; Kleinman, L. M.; Cradock, J . C.; Davignon, J . P.
Investigational drug information. Drug Intell. Clin. Pharm.
1979, 13, 340-343.
(32) Gamcsik, M.; Ludeman, S. M.; Shulman-Roskes, E. M.; McLen-
nan, I. J .; Colvin, M. E.; Colvin, O. M. Protonation of phosphor-
amide mustard and other phosphoramides. J . Med. Chem. 1993,
36, 3636-3645.
(33) Albert, A.; Serjeant, E. P. Ionization constants of acids and bases;
J ohn Wiley and Sons: New York, 1962.
(34) O¨ ney, I.; Caplow, M. Phosphoramidate Solvolysis. J . Am. Chem.
Soc. 1967, 89, 6972-6980.
(35) Millis, K. K.; Colvin, M. E.; Shulman-Roskes, E. M.; Ludeman,
S. M.; Colvin, O. M.; Gamcsik, M. P. Comparison of the
protonation of isophosphoramide mustard and phosphoramide
mustard. J . Med. Chem. 1995, 38, 2166-2175.
(36) Koizumi, T.; Haake, P. Acid-catalyzed and alkaline hydrolyses
of phosphinamides. The lability of phosphorus-nitrogen bonds
in acid and the mechanisms of reaction. J . Am. Chem. Soc. 1973,
95, 8073-8079.
(37) Rahil, J .; Haake, P. Reactivity and mechanism of hydrolysis of
phosphonamides. J . Am. Chem. Soc. 1981, 103, 1723-1734.
(38) Modro, T. A.; Graham, D. H. Phosphoric Amides. 3. Acidic
cleavage of the phosphorus-nitrogen bond in acyclic and cyclic
phosphoramidates. J . Org. Chem. 1981, 46, 1923-1925.
(39) Tyssee, D. A.; Bausher, L. P.; Haake, P. Displacement at
phosphorus by a mechanism with A1 character. Acid-catalyzed
hydrolysis of phosphinanilides. J . Am. Chem. Soc. 1973, 95,
8066-8072.
(40) Gilard, V.; Martino, R.; Malet-Martino, M.; Niemeyer, U. Stabil-
ity of commercial formulations and aqueous solutions of ifosfa-
mide (a reply). Drug Metab. Dispos. 1997, 25, 927-931.
(41) Le Roux, C.; Modro, A. M.; Modro, T. A. Decomposition of
N-phosphorylated nitrogen mustards: a mechanistic investiga-
tion. J . Org. Chem. 1995, 60, 3832-3839.
(42) Wan, H.; Modro, T. A. Chemistry of N-phosphorylated nitrogen
mustards: the effect of a second nitrogen substituent at phos-
phorus on the stability of the system. Phosphorus, Sulfur Silicon
1996, 108, 155-168.