Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
lowered rotational motions of naphthyl rings and increased
intermolecular interactions between larger naphthyl rings in the
aggregated state, respectively. When the aromatic rotors are
replaced by the alky chains, such as ethyl chains in 3ah, the non-
radiative decay channel of the excited state is blocked to a larger
extent, resulting in a higher value in solutions. Meanwhile, owing
to the planar conformation of 3ah, intermolecular interactions are
promoted, leading to a decreased value in aggregated state. Both
effects work collectively, making 3ah exhibit aggregation-caused
quenching effect (ACQ). 3ma also shows ACQ effect because fusing
a phenyl ring to isoquinolone can effectively enlongate the
conjugation of the stator, resulting in red-shifted absorption and
emission, and improved value in solution. The large planar core is
prone to form intermolecular interaction, rendering a decreased
value in the aggregated state. Such ACQ effect, however, is
allievated in compounds 4 because of the twisted conformation of
the stator as disclosed by their crystal structures (Fig. S6-S8).
DOI: 10.1039/C5CC05239D
Chem.Int. Ed. 2015, 54, 874.
3
(a) T. Mutai, H. Tomoda, T. Ohkawa, Y. Yabe and K. Araki,
Angew. Chem.Int. Ed. 2008, 47, 9522; (b) T. Han, X. Feng, B.
Tong, J. Shi, L. Chen, J. Zhi and Y. Dong, Chem. Commun.
2012, 48, 416; (c) M. Matsui, T. Shibata, M. Fukushima, Y.
Kubota and K. Funabiki, Tetrahedron 2012, 68, 9936; (d) B.
Wang, N. He, B. Li, S. Jiang, Y. Qu, S. Qu and J. Hua, Aust. J.
Chem. 2012, 65, 387.
4
5
(a) Y.-T. Wu, M.-Y. Kuo, Y.-T. Chang, C.-C. Shin, T.-C. Wu, C.-C.
Tai, T.-H. Cheng and W.-S. Liu, Angew. Chem.Int. Ed. 2008,
47, 9891; (b) K. Namitharan and K. Pitchumani, Org. Biomol.
Chem. 2012, 10, 2937; (c) Y. Ezhumalai, T.-H. Wang and H.-F.
Hsu, Org. Lett. 2015, 17, 536.
(a) I. V. Seregin and V. Gevorgyan, Chem. Soc. Rev. 2007, 36
,
1173; (b) X. Chen, K. M. Engle, D.-H. Wang and J.-Q. Yu,
Angew. Chem. Int. Ed. 2009, 48, 5094; (c) T. W. Lyons and M.
S. Sanford, Chem. Rev. 2010, 110, 1147; (d) J. Yamaguchi, A.
D. Yamaguchi and K. Itami, Angew. Chem. Int. Ed. 2012, 51
,
8960; (e) L. Ackermann, Accounts Chem. Res. 2014, 47, 281;
Taken together, we have developed
catalyzed redox-neutral C–H activation/cyclization strategy to
prepare isoquinolones by coupling readily available
a novel rhodium(III)-
(f) X.-S. Zhang, K. Chen and Z.-J. Shi, Chem. Sci. 2014, 5, 2146;
(g) G. Song, F. Wang and X. Li, Chem. Soc. Rev. 2012, 41, 3651.
6
7
(a) P. Duan, Y. Yang, R. Ben, Y. Yan, L. Dai, M. Hong, Y.-D. Wu,
D. Wang, X. Zhang and J. Zhao, Chem. Sci. 2014, 5, 1574; (b)
benzoylhydrazines with alkynes. The N–N bond acted as an
oxidizing DG to facilitate ortho C–H activation. With this powerful
synthetic strategy, we successfully assembled new AIE molecules 3
with isoquinolone skeleton and 4 containing tetracyclic amides. The
broad substrate scope and the high reaction efficiency allowed us
to freely adjust the substitutions on the stator as well as the
chemical structures of the rotors. Our prelimanry results on the
structure−property relationships suggested the following trends:
(1) molecules with two benzene rotors showed more pronounced
AIE effect than those with one benzene rotor or two naphthyl
rotors or two ethyl rotors;
(2) with same benzene rotors, molecules with larger aromatic
stator as the naphthyl ring showed ACQ behavior;
(3) decreasing the planarity of large aromatic stator is helpful to
suppress the ACQ effect and improve AIE property.
We expect that this work will help researchers to identify and
synthesize AIE molecules with diverse molecular designs and with
more functions.
P. Duan, X. Lan, Y. Chen, S.-S. Qian, J. J. Li, L. Lu, Y. Lu, B.
Chen, M. Hong and J. Zhao, Chem. Commun. 2014, 50
12135; (c) Y. Chen, D. Wang, P. Duan, R. Ben, L. Dai, X. Shao,
M. Hong, J. Zhao and Y. Huang, Nat. Commun. 2014, , 4610.
,
5
(a) N. Guimond, C. Gouliaras and K. Fagnou, J. Am. Chem.
Soc. 2010, 132, 6908; (b) N. Guimond, S. I. Gorelsky and K.
Fagnou, J. Am. Chem. Soc. 2011, 133, 6449; (c) F. W.
Patureau and F. Glorius, Angew. Chem. Int. Ed. 2011, 50
,
1977; (d) S. Rakshit, C. Grohmann, T. Besset and F. Glorius, J.
Am. Chem. Soc. 2011, 133, 2350; (e) D. Zhao, Z. Shi and F.
Glorius, Angew. Chem. Int. Ed. 2013, 52, 12426; (f) P. C. Too,
Y.-F. Wang and S. Chiba, Org. Lett. 2010, 12, 5688; (g) X.
Zhang, D. Chen, M. Zhao, J. Zhao, A. Jia and X. Li, Adv. Synth.
Catal. 2011, 353, 719; (h) J. M. Neely and T. Rovis, J. Am.
Chem. Soc. 2013, 135, 66; (i) J. R. Huckins, E. A. Bercot, O. R.
Thiel, T.-L. Hwang and M. M. Bio, J. Am. Chem. Soc. 2013,
135, 14492; (j) T. K. Hyster and T. Rovis, Chem. Commun.
2011, 47, 11846; (k) S.-C. Chuang, P. Gandeepan and C.-H.
Cheng, Org. Lett. 2013, 15, 5750; (l) L. Zheng and R. Hua,
Chem. Eur. J. 2014, 20, 2352; (m) Y. Liang, K. Yu, B. Li, S. Xu,
H. Song and B. Wang, Chem. Commun. 2014, 50, 6130; (n) W.
Han, G. Zhang, G. Li and H. Huang, Org. Lett. 2014, 16, 3532;
(o) K. Muralirajan and C.-H. Cheng, Adv. Synth. Catal. 2014,
356, 1571; (p) G. Liu, Y. Shen, Z. Zhou and X. Lu, Angew.
Chem. Int. Ed. 2013, 52, 6033; (q) F. Hu, Y. Xia, F. Ye, Z. Liu, C.
This work is financially supported by the Doctoral Fund of Ministry
of
Education
of
China,
the
Shenzhen
Government
(CXZZ20140419131807788 and JCYJ20140627145302109), the
Guangdong Government (S20120011226), the National Science
Foundation of China (21332005) and the MOST of China
(2014AA020512).
Ma, Y. Zhang and J. Wang, Angew. Chem. Int. Ed. 2014, 53
,
1364; (r) H. Zhang, K. Wang, B. Wang, H. Yi, F. Hu, C. Li, Y.
Zhang and J. Wang, Angew. Chem. Int. Ed. 2014, 53, 13234;
(s) B. Liu, C. Song, C. Sun, S. Zhou and J. Zhu, J. Am. Chem.
Soc. 2013, 135, 16625; (t) C. Wang and Y. Huang, Org. Lett.
2013, 15, 5294; (u) L. Ackermann and S. Fenner, Org. Lett.
2011, 13, 6548; (v) S. Yu, S. Liu, Y. Lan, B. Wan and X. Li, J.
Am. Chem. Soc. 2015, 137, 1623 (an oxidizing C-N group).
(a) S. Mochida, N. Umeda, K. Hirano, T. Satoh and M. Miura,
Chem. Lett. 2010, 39, 744; (b) G. Song, D. Chen, C.-L. Pan, R.
H. Crabtree and X. Li, J. Org. Chem. 2010, 75, 7487.
E. M. Simmons and J. F. Hartwig, Angew. Chem. Int. Ed. 2012,
51, 3066.
Notes and references
1
(a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S.
Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem. Commun.
2001, 1740; (b) Y. Dong, J. W. Lam, A. Qin, J. Liu, Z. Li, B. Z.
8
9
Tang, J. Sun and H. S. Kwok, Appl. Phys. Lett. 2007, 91
,
011111; (c) Y. N. Hong, J. W. Y. Lam and B. Z. Tang, Chem.
Soc. Rev. 2011, 40, 5361; (e) J. Mei, Y. Hong, J. W. Lam, A.
Qin, Y. Tang and B. Z. Tang, Adv. Mater. 2014, 26, 5429.
(a) B.-K. An, S.-K. Kwon, S.-D. Jung and S. Y. Park, J. Am.
Chem. Soc. 2002, 124, 14410; (b) S. Kim, Q. Zheng, G. S. He,
D. J. Bharali, H. E. Pudavar, A. Baev and P. N. Prasad, Adv.
Funct.Mater. 2006, 16, 2317; (c) Z. Chi, X. Zhang, B. Xu, X.
Zhou, C. Ma, Y. Zhang, S. Liu and J. Xu, Chem. Soc. Rev. 2012,
10 (a) N. Guimond and K. Fagnou, J. Am. Chem. Soc. 2009, 131
,
2
12050; (b) K. Morimoto, K. Hirano, T. Satoh and M. Miura,
Org. Lett. 2010, 12, 2068; (c) T. K. Hyster and T. Rovis, J. Am.
Chem. Soc. 2010, 132, 10565.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins