508
S. Wang et al. / Tetrahedron Letters 53 (2012) 505–508
5. Kakiuchi, F. et al Nature 1993, 366, 529.
Based on these results, a tandem mechanism is proposed to
6. (a) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077; (b) Dyker, G.
Angew. Chem. 1999, 111, 1808; Angew. Chem. Int. Ed. 1999, 38, 1698.; (c) Stahl, S.
S.; Labinger, J. A.; Bercaw, J. E. Angew. Chem. 1998, 110, 2298; Angew. Chem. Int.
Ed. 1998, 37, 2180.; (d) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439; (e)
Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res.
1995, 28, 154; (f) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507; Guari, Y.;
Sabo-Etienne, S.; Chaudret, B. Eur. J. Inorg. Chem. 1999, 1047.
7. (a) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904; (b) Dwight, T.
A.; Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9, 3137; (c)
Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172; (d) Stuart, D. R.; Villemure, E.;
Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072; (e) Rong, Y.; Li, R.; Lu, W.
Organometallics 2007, 26, 4376; (f) Xia, J.-B.; You, S.-L. Organometallics 2007, 26,
4869; (g) Li, B.-J.; Tian, S.-L.; Fang, Z.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47,
1115.
explain the intramolecular C–H activation to the aryl ring (Scheme
2).14 First, substrate 3 and palladium(II) acetate could form a Pd(II)
intermediate 5 with the release of one molecule of acetic acid.
Palladium(II) intermediate 6 then loses one molecule acetic acid
to provide a six-membered cyclic palladium(II) complex 7. After
reductive elimination, the Pd(II)-containing six-membered ring of
7 produces the carbazole product 4 and a Pd(0) species, which is
reoxidized to Pd(II) acetate in the presence of Ag2O to complete
the catalytic cycle.
In summary, an efficient way to produce substituted carbazoles
has been developed through a tandem C–H activation in this work.
The products can be assembled in a simple two-step protocol from
readily available reagents. Considering its excellent reaction effi-
ciency, wide substrate scope, and very mild reaction conditions,
this present intramolecular oxidative C–H coupling will be an
attractive route to the practical synthesis of carbazoles. Further
studies on the mechanism and applications are underway in our
laboratory.
8. (a) Knölker, H.-J. Top. Curr. Chem. 2005, 244, 115–148; Knölker, H.-J.; Reddy, K.
R. Chem. Rev. 2002, 102, 4303–4427.
9. (a) Chakraborty, D. P. In The Alkaloids Chemistry and Pharmacology; Cordell, G.
A., Ed.; Academic: New York, 1993; pp 257–364. Vol. 44; (b) Chakraborty, D. P.;
Roy, S. In Progress in the Chemistry of Organic Natural Products; Herz, W., Kirby,
G. W., Steglich, W., Tamm, Ch., Eds.; Springer: New York, 1991; pp 72–152. Vol.
57; (c) Bhattacharyya, P.; Chakraborty, D. P. In Progress in the Chemistry of
Organic Natural Products; Herz, W., Grisebach, H., Kirby, G. W., Tamm, Ch., Eds.;
Springer: New York, 1987; pp 159–209. Vol. 52; (d) Chakraborty, D. P. In
Progress in the Chemistry of Organic Natural Products; Herz, W., Grisebach, H.,
Kirby, G. W., Eds.; Springer: New York, 1977; pp 299–371. Vol. 34.
10. (a) Krahl, M. P.; Jäger, A.; Krause, T.; Knölker, H.-J. Org. Biomol. Chem. 2006, 4,
3215–3219; (b) Meragelman, K. M.; McKee, T. C.; Boyd, M. R. J. Nat. Prod. 2000,
63, 427–428; (c) TePaske, M. R.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. J. Org.
Chem. 1989, 54, 4743–4746; (d) Kondo, S.; Katayama, M.; Marumo, S. J. Antibiot.
1986, 39, 727–730; (e) Chakraborty, D. P.; Bose, P. K. Experientia 1965, 21, 1340.
11. Sakano, K.-I.; Ishimaru, K.; Nakamura, S. J. Antibiot. 1980, 33, 683–689.
12. (a) Thomas, K. R. J.; Lin, J. T.; Tao, Y.-T.; Ko, C.-W. J. Am. Chem. Soc. 2001, 123,
9404–9411; (b) Díaz, J. L.; Dobarro, A.; Villacampa, B.; Velasco, D. Chem. Mater.
2001, 13, 2528–2536; (c) Chen, C.-T. Chem. Mater. 2004, 16, 4389–4400; (d) Li,
Y.; Wu, Y.; Ong, B. S. Macromolecules 2006, 39, 6521–6527.
13. (a) Brunner, K.; van Dijken, A.; Bärner, H.; Bastiaansen, J. J. A. M.; Kiggen, N. M.
M.; Langeveld, B. M. W. J. Am. Chem. Soc. 2004, 126, 6035–6042; (b) Yeh, S.-J.;
Wu, M.-F.; Chen, C.-T.; Song, Y.-H.; Chi, Y.; Ho, M.-H.; Hsu, S.-F.; Chen, C. H. Adv.
Mater. 2005, 17, 285–289; (c)Organic Light Emitting Devices: Synthesis Properties,
and Applications; Müllen, K., Scherf, U., Eds.; Wiley-VCH: Weinheim, 2006; (d)
Grigalevicius, S. Synth. Met. 2006, 156, 1–12; (e) Tsai, M.-H.; Hong, Y.-H.; Chang,
C.-H.; Su, H.-C.; Wu, C.-C.; Matoliukstyte, A.; Simokaitiene, J.; Grigalevicius, S.;
Grazulevicius, J. V.; Hsu, C.-P. Adv. Mater. 2007, 19, 862–866; (f) Peter Tsang, W.
C.; Munday, R. H.; Gordon Brasche; Nan Zheng; Buchwald, S. L. J. Org. Chem.
2008, 73, 7603–7610.
Acknowledgment
Financial support from Natural Science Foundation of China
(Nos. 21025207 and 20975092) is greatly acknowledged.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374; (b)
Corriu, R. J. P.; Masse, J. P. J. Chem. Soc., Chem. Commun. 1972, 144; (c)Cross-
Coupling Reaction; Miyaura, N., Ed.; Springer: Berlin, 2002.
2. Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97, 2879–2932.
3. Murai, S. In Activation of Unreactive Bonds and Organic Synthesis; Murai, S., Ed.;
Springer: Berlin, 1999; Vol. 3, pp 48–78.
14. Liégault, B.; Lee, D.; Huestis, M. P.; Stuart, D. R.; Fagnou, K. J. Org. Chem. 2008,
73, 5022–5028.
4. Activation and Functionalization of Alkanes; Hill, C. L., Ed.; John Wiley & Sons:
New York, 1989.
15. Nicolas Willand, N.; Patrick, Toto; Jean-Claude, Gesquière; Benoit, Deprez
Tetrahedron. Lett. 2006, 47, 1181–1186.