mg, 0.07 mmol, 35% yield). 1H NMR (400 MHz, CDCl3) δ 8.62
– 8.47 (m, 2H), 8.32 (d, J = 8.0 Hz, 1H), 8.06 (d, J = 8.5 Hz, 1H),
7.69 (t, J = 7.9 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.02 – 6.88 (m,
2H), 5.48 – 5.38 (s, 2H), 5.28 (d, 1H), 5.18 (s, 1H), 5.02 (dd, 8.2
Hz, 2H), 4.3(t, 1H), 4.17(t, 2H), 4.15(t, 1H), 4.10(d, 2H), 2.15(s, 3H)
2.02 (s, 3H), 1.98 (s, 3H), 1.95 (s, 3H), 1.68-1.62 (m, 2H), 1.43-1.32
(m, 2H), 0.90 (dd, 3H). 13C NMR (CDCl3) δ, 170.3, 169.5, 164.2,
163.8, 157.4, 153.1, 138.9, 132.6, 131.4, 130.6, 130.4, 129.1,
126.8, 125.8, 123.7, 123.0, 118.2, 117.1, 99.7, 77.4, 71.3, 70.9,
68.8, 67.6, 70.0, 61.4, 40.4, 30.4, 29.8, 20.8, 20.7, 20.5, 14.0.
ESI-HRMS (m/z): calculated for C38H40N2O14 [M+Na]+ 771.25,
found 771.2373. The stock solution of the AM-RP-G (4.5 × 10-3M)
were prepared in dimethyl sulphoxide (DMSO).
Alpha-peptide of Beta-galactosidase. Analyst. 1998, 123, 1309-1314.
[4] (a) Han, A. L.; Park, S. H and Park, M. S. Hydrogen Treatment
Protects against Cell Death and Senescence Induced by Oxidative
Damage. J. Microbiol. Biotechnol. 2017, 27, 365-371; (b) Heidari, S.;
Mehri, S.; Shariaty, V .; Hosseinzadeh, H. Preventive Effects of Crocin
on Neuronal Damages Induced by D-galactose Through AGEs and
Oxidative Stress in Human Neuroblastoma Cells (SH-SY5Y).
J.Pharmacopuncture. 2018, 21, 18-25; (c) Zhang, J. J.; Chai, X. Z.; He,
X. P.; Kim, H. J.; Yoon ,Juyoung.; Tian, H. Fluorogenic probes for
disease-relevant enzymes. Chem. Soc. Rev. 10.1039/c7cs00907k; (d)
Zhang, J.; Fu, Y.; Han, H.H.; Zang, Y.; Li, J.; He, X.P.; Feringa, B. L.; Tian,
H.. Remote Light-controlled Intracellular Target Recognition by
Photochromic Fluorescent Glycoprobes. Nat. Commun. 2017, 8, 987.
(a) Fernandez-Cuervo, G.; Tucker, K. A.; Malm, S. W.; Jones, K. M.;
Pagel, M. D. Diamagnetic Imaging Agents with a Modular Chemical
Design for Quantitative Detection of beta-Galactosidase and
beta-Glucuronidase Activities with CatalyCEST MRI. Bioconjugate.
Chem. 2016, 27 (10), 2549–2557; (b) Griffith, K. L.; Wolf, R. E. Jr.
Measuring β-Galactosidase Activity in Bacteria: Cell Growth,
Permeabilization, and Enzyme Assays in 96-Well Arrays. Biochem.
Bioph. Res. Co. 2002, 290, 397-402; (c) Lindberg, E.; Mizukami, S.
Ibata, K.; Miyawaki, A.; Kikuchi, K. Development of Luminescent
Coelenterazine Derivatives Activatable by beta-Galactosidase for
Monitoring Dual Gene Expression. Chemistry. 2013, 19,
14970-14976.
Cytotoxicity assay of AM-RP-G
HeLa cells were firstly seeded to a 96-well plate with the
density of 5 × 103 per well and cultured in the Dulbecco’s
modified eagle medium (DMEM) at 37 °C for 24 h. Then,
AM-RP-G with different concentrations were added to each well,
which were incubated with the cells for 12 h. After the incubation,
the cells were washed thrice with PBS. Then, 10% volume ratio
(v/v) MTT dye solution (10 mg/mL) were added to obtain the
value of cell viability. All experiments were performed in
triplicate.
Acknowledgement
[5] Chauvin, T.; Durand, P.; Bernier, M.; Meudal, H.; Doan, B. T.; Noury,
F.; Badet, B.; Beloeil, J. C.; Toth, E. Detection of Enzymatic Activity by
PARACEST MRI: a General Approach to Target a Large Variety of
Enzymes. Angew. Chem. Int. Edit. 2008, 47, 4370-4372.
This work was supported by National Key R&D Program of
China (2016YFA0200800); NSFC (51672284); Beijing Natural
Science Foundation (2181002); Chinese Academy of Sciences
(1A1111KYSB20180017, QYZDJ-SSW-JSC032, XDB17000000)
(a) Wang, W. ; Vellaisamy, K.; Li, G.; Wu, C.; Ko, C. N.; Leung, C. H.;
Ma, D. L. Development of a Long-Lived Luminescence Probe for
Visualizing beta-Galactosidase in Ovarian Carcinoma Cells. Anal.
Chem. 2017, 89, 11679-11684; (b) Jiang, G.; Zeng, G.; Zhu, W.; Li, Y.;
Dong, X.; Zhang, G.; Fan, X.; Wang, J.; Wu, Y.; Tang, B. Z. A Selective
and Light-up Fluorescent Probe for beta-Galactosidase Activity
Detection and Imaging in Living Cells Based on an AIE
Tetraphenylethylene Derivative. Chem. Coummun. 2017, 53,
4505-4508; (c) Hettiarachchi, S. U.; Prasai, B.; McCarley, R. L.
Detection and Cellular Imaging of Human Cancer Enzyme Using a
Turn-on, Wavelength-shiftable, Self-immolative Profluorophore. J.
Am. Chem. Soc. 2014, 136, 7575-7578; (d) Fu, Y.X.; Han, H.H.; Zhang,
J. J.; He, X. P.; Feringa, B. L.; Tian, H. Photocontrolled Fluorescence
“Double-Check” Bioimaging Enabled by a Glycoprobe–Protein Hybrid.
J. Am. Chem. Soc. 2018, 140 (28), 8671–8674.
References
[1] (a) Okamura-Oho, Y.; Zhang, S.; J. W. Callahan, J. W.; Murata, M.;
Oshima, A.; and Y. Suzuki, Y. Maturation and Degradation of
β-Galactosidase in the Post-Golgi Compartment are Regulated by
Cathepsin B and a Non-cysteine Protease. FEBS Letters. 1997, 419,
231-234; (b) Banjanac, K.; Carevid, M.; Dorovid, M.; Milivojevid, A.;
Prlainovid, N.; Marinkovid,
A
and Bezbradica, D. Novel
β-Galactosidase Nanobiocatalyst Systems for Application in the
Synthesis of Bioactive Galactosides. RSC . Adv. 2016, 6, 97216-97225.
[2] (a) Sheth, J. J.; Sheth, F. J.; and Bhattacharya, R. Morquio-B
Syndrome (MPS-IV B) Associated with beta-Galactosidase Deficiency
in Two Siblings. I.J.P. 2002, 69, 109-111; (b) Chatterjee, S. K.;
[6] Xu, K.; Tang, X. A.; Gai, Y. B.; Mehmood, M. A.; Xiao, X. A.; Wang, F. P.
Molecular Characterization of Cold-inducible beta-Galactosidase
from Arthrobacter sp ON14 Isolated from Antarctica. J. Microbiol.
Biotechnol. 2011, 21, 236-242.
[7] (a) Rotman, B.; Zderic, J. A.; Edelstein, M. Fluorogenic Substrates for
β-D-Galactosidases and Phosphatases Derived from Fluorescein (3,
6-Dihydroxyfluoran) and its Monomethyl Ether. Proc Natl Acad Sci U
S A. 1963, 50, 1-6; (b) Araki, K.; Araki, M.; Miyazaki, J.; Vassalli, P.
Site-specific Recombination of a Transgene in Fertilized-eggs by
Transient Expression of CRE Recombinase. Proc Natl Acad Sci U S A.
1995, 92, 160-164.
Bhattacharya,
M and Barlow, J. J. Glycosyltransferase and
Glycosidase Activities in Ovarian Cancer Patients. Cancer. Res. 1979,
39, 1943-1951.
[3] (a) Spergel, D. J.; Krüth, U.; Shimshek, D. R.; Sprengel, R and Seeburg,
P. H. Using Reporter Genes to Label Selected Neuronal Populations in
Transgenic Mice for Gene Promoter, Anatomical, and Physiological
Studies. Prog. Neurobiol.2001, 63, 673-686; (b) Shawlot, W.; Deng, J.
M.; Fohn, L. E and Behringer, R. R. Restricted Beta-galactosidase
Expression of a Hygromycin-lacZ Gene Targeted to the beta-Actin
Locus and Embryonic Lethality of beta-Actin Mutant mice. Transgenic.
Res.1998, 7, 95-103; (c) Chandrawati, R.; Chang, J. Y.; Reina-Torres, E.
Jumeaux, C.; Sherwood, J. M.; Stamer, W. D.; Zelikin, A. N.; Overby, D.
R and Stevens, M. M. Localized and Controlled Delivery of Nitric
Oxide to the Conventional Outflow Pathway via Enzyme Biocatalysis:
Toward Therapy for Glaucoma. Adv. Mater. 2017, 29, 1604932;
[8] Kamiya, M.; Kobayashi, H.; Hama, Y.; Koyama, Y.; Bernardo, M.;
Nagano, T.; Choyke, P. L.; Urano, Y. An Enzymatically Activated
Fluorescence Probe for Targeted Tumor Imaging. J. Am. Chem. Soc.
2007, 129, 3918-3929.
[9] Kamiya, M.; Asanuma, D.; Kuranaga, E.; Takeishi, A.; Sakabe, M.;
Miura, M.; Nagano, T.; Urano, Y. beta-Galactosidase Fluorescence
Probe with Improved Cellular Accumulation Based on a Spirocyclized
Rhodol Scaffold. J. Am. Chem. Soc. 2011, 133, 12960-12963.
[10] Kikuchi, K. Design, Synthesis, and Biological Application of
Fluorescent Sensor Molecules for Cellular Imaging. In: Endo I.,
(d) Li, X.; Majdi, S.; Dunevall, J.; Fathali, H and A. G. Ewing, A. G.
Quantitative Measurement of Transmitters in Individual Vesicles in
the Cytoplasm of Single Cells with Nanotip Electrodes. Angew. Chim.
Int. Ed. 2015, 54, 11978-11982; (e) White, S. R.; N. H.; Chiu, L and
Christopoulos, T. K. Expression Immunoassay Based on Antibodies
Labeled with
a Deoxyribonucleic Acid Fragment Encoding the
This article is protected by copyright. All rights reserved.