(9 H, s, COC(CH3)3), 3.5 (1 H, dd, J 12 and 4, C(5ꢀ)Ha), 3.6
(1 H, dd, J 12 and 4, C(5ꢀ)Hb), 3.9 (1 H, ddd, J 4, 4 and 3,
C(4ꢀ)H), 4.1 (1 H, dd, J 5 and 3, C(3ꢀ)H), 4.3 (1 H, dd, J 6
and 5, C(2ꢀ)H), 6.1 (1 H, d, J 6, C(1ꢀ)H), 8.2 (1 H, s, C(6)H),
11.1 (1 H, s, N(3)H) and 12.2 (1 H, s, NHPiv); dC (100 MHz,
[D6]DMSO) 26.9 (COC(CH3)3), 40.7 (COC(CH3)3), 61.9 (C5ꢀ),
71.0 (C3ꢀ), 74.9 (C2ꢀ), 86.1 (C4ꢀ), 87.0 (C1ꢀ), 87.7 (C5), 103.6
(C4a), 115.2 (CN), 130.3 (C6), 149.3 (C7a), 149.7 (C2), 156.1
(C4) and 182.0 (COC(CH3)3); m/z (ESI+) 414.1363 ([M + Na]+,
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft (Leibniz Award
program, SFB 646, Grant CA275/8) for financial support.
Notes and references
1 J. Rozenski, P. F. Crain and J. A. McCloskey, Nucleic Acids Res., 1999,
27, 196–197.
2 P. F. Agris, Nucleic Acids Res., 2004, 32, 223–238.
+
3 G. R. Bjo¨rk, J. U. Ericson, C. E. D. Gustafsson, T. G. Hagervall, Y. H.
C17H21N5NaO6 requires 414.1384).
Jo¨nsson and P. M. Wikstro¨m, Annu. Rev. Biochem., 1987, 56, 263–287.
4 G. R. Bjo¨rk, J. M. B. Durand, T. G. Hagervall, R. Leipuviene, H. K.
Lundgren, K. Nilsson, P. Chen, Q. Qian and J. Urbonavicius, FEBS
Lett., 1999, 452, 47–51.
5 G. A. Garcia and J. D. Kittendorf, Bioorg. Chem., 2005, 33, 229–251.
6 M. Helm, Nucleic Acids Res., 2006, 34, 721–733.
7 D. Iwata-Reuyl, Bioorg. Chem., 2003, 31, 24–43.
8 K. Nakanishi and O. Nureki, Mol. Cells, 2005, 19, 157–166.
9 B. C. Persson, Mol. Microbiol., 1993, 8, 1011–1016.
10 B. Stengl, K. Reuter and G. Klebe, ChemBioChem, 2005, 6, 1926–1939.
11 F. Klepper, E.-M. Jahn, V. Hickmann and T. Carell, Angew. Chem., Int.
Ed., 2007, 46, 2325–2327.
2-Amino-5-cyano-3,4-dihydro-7-b-D-ribofuranosyl-
7H-pyrrolo[2,3-d]pyrimidine-4-one (PreQ0) 2
13 (18.0 mg, 0.046 mmol) was dissolved i◦n 28% ammonia in water
(4 cm3). The solution was stirred at 60 C for 17 h. Subsequent
removal of the solvent in vacuo resulted in a colourless oil, which
was purified via column chromatography (ethyl acetate–MeOH
7 : 1). PreQ0 2 (14 mg, 99%) was obtained as a white solid. Rf =
12 J. M. Gregson, P. F. Crain, C. G. Edmonds, R. Gupta, T. Hashizume,
D. W. Phillipson and J. A. McCloskey, J. Biol. Chem., 1993, 268, 10076–
10086.
◦
0.30 (ethyl acetate–MeOH 5 : 1); mp >260 C (decomposition);
mmax/cm−1 3363 vs, 3165 vs (NH), 2231 s (CN), 1651 vs, 1623 vs,
1576 s (NH), 1448 s (CH) and 1398 vs; dH (400 MHz, [D6]DMSO)
3.53 (1 H, dd, J 12 and 4, C(5ꢀ)Ha), 3.59 (1 H, dd, J 12 and 4,
C(5ꢀ)Hb), 3.85 (1 H, ddd, J 4, 4 and 4, C(4ꢀ)H), 4.06 (1 H, dd, J
5 and 4, C(3ꢀ)H), 4.25 (1 H, dd, J 6 and 5, C(2ꢀ)H), 5.86 (1 H, d,
J 6, C(1ꢀ)H), 6.65 (2 H, s, NH2), 7.92 (1 H, s, C(6)H) and 10.89
(1 H, s, N(3)H); dC (150 MHz, [D6]DMSO) 61.9 (C5ꢀ), 70.9 (C3ꢀ),
74.8 (C2ꢀ), 85.8 (C4ꢀ), 87.0 and 87.2 (C1ꢀ and C5), 99.3 (C4a),
116.0 (CN), 128.2 (C6), 152.1 (C7a), 154.7 (C2) and 157.9 (C4);
13 M. W. Kilpatrick and R. T. Walker, Zentralbl. Bakteriol., Mikrobiol.,
Hyg., Abt. 1, Orig. C, 1982, 3, 79–89.
14 M. T. Migawa, J. M. Hinkley, G. C. Hoops and L. B. Townsend, Synth.
Commun., 1996, 26, 3317–3322.
15 H. Akimoto, E. Imamiya, T. Hitaka, H. Nomura and S. Nishimura,
J. Chem. Soc., Perkin Trans. 1, 1988, 1637–1644.
16 P. G. Jagtap, Z. Chen, C. Szabo and K.-N. Klotz, Bioorg. Med. Chem.
Lett., 2004, 14, 1495–1498.
17 Z. Janeba, P. Francom and M. J. Robins, J. Org. Chem., 2003, 68,
989–992.
18 M.-C. Liu, M.-Z. Luo, D. E. Mozdziesz and A. C. Sartorelli,
Nucleosides, Nucleotides Nucleic Acids, 2005, 24, 45–62.
19 D. M. Williams, D. Y. Yakovlev and D. M. Brown, J. Chem. Soc., Perkin
Trans. 1, 1997, 1171–1178.
m/z (ESI−) 306.0837 (M−, C12H12N5O5 requires 306.0844).
−
20 P. A. Levene and E. T. Stiller, J. Biol. Chem., 1933, 102, 187–201.
21 J. F. Bickley, S. M. Roberts, M. G. Santoro and T. J. Snape, Tetrahedron,
2004, 60, 2569–2576.
2-Amino-3,4-dihydro-4-oxo-7-b-D-ribofuranosyl-7H-
pyrrolo[2,3-d]pyrimidine-5-carboximidamide (archaeosine) 1
22 R. S. Klein, H. Ohrui and J. J. Fox, J. Carbohydr. Chem., 1974, 1,
2 (10.0 mg, 0.03 mmol) was dissolved in methanol (2 cm3) and
treated with gaseous HCl for 3 h. Subsequently, nitrogen was
bubbled through the solution to remove the solvent. The resulting
white solid was stirred in 7 N ammonia in methanol (2 cm3) for
16 h. Removal of the solvent in vacuo yielded a white solid, which
was purified by HPLC (eluent A: 0.1 M triethylamine–AcOH in
water, eluent B: 0.1 M triethylamine–AcOH in 20% water and 80%
acetonitrile, gradient: 100% A, 0% B → 80% A, 20% B in 45 min,
retention time = 22.2 min, Nucleosil 100–7 C18). The solvent
was removed in vacuo to give a 2 : 1 mixture of nucleoside 1 and
triethylammonium acetate (4 mg, 30%). Rf = 0.57 (isopropanol–
water–AcOH 5 : 1 : 1); mp >215 ◦C (decomposition); kmax (HPLC
buffer)/nm 306; mmax/cm−1 3368 vs, 3176 vs (NH), 2931 s, 1660 vs,
1559 s (NH), 1518 s, 1411 s (CH), 1058 vs (CO) and 1023 vs; dH
(600 MHz, [D6]D2O) 1.93 (3 H, s, H3CCOO−), 3.84 (1 H, dd, J 4
and 12, C(5ꢀ)Ha), 3.90 (1 H, dd, J 3 and 12, C(5ꢀ)Hb), 4.24 (1 H,
m, C(4ꢀ)H), 4.38 (1 H, dd, J 4 and 5, C(3ꢀ)H), 4.61 (1 H, dd, J
5 and 6, C(2ꢀ)H), 6.06 (1 H, d, J 6, C(1ꢀ)H) and 8.03 (1 H, s,
C(6)H) [lit.,12 3.6 (m, C(5ꢀ)H2), 4.0 (m, C(4ꢀ)H), 4.1 (dd, C(3ꢀ)H),
4.4 (dd, C(2ꢀ)H), 5.8 (d, C(1ꢀ)H) and 7.8 (s, C(6)H))]; dC (150 MHz,
[D6]D2O) 23.4 (CH3COO−), 61.5 (C5ꢀ), 70.5 (C3ꢀ), 74.2 (C2ꢀ), 85.3
(C4ꢀ), 87.9 (C1ꢀ), 98.1 (C4a), 107.4 (C5), 125.3 (C6), 153.4, 154.7,
159.2 and 162.2 (C7a, Camidine, C2, C4); m/z (ESI−) 323.1116 (M−.
265–269.
23 C. L. Gibson, S. La Rosa, K. Ohta, P. H. Boyle, F. Leurquin, A.
Lemacon and C. J. Suckling, Tetrahedron, 2004, 60, 943–959.
24 K. Ramasamy, R. K. Robins and G. R. Revankar, J. Heterocycl. Chem.,
1988, 25, 1043–1046.
25 T. Kaneko, M. Aso, N. Koga and H. Suemune, Org. Lett., 2005, 7,
303–306.
26 T. Kondo, K. Okamoto, T. Ohgi and T. Goto, Tetrahedron, 1986, 42,
207–213.
27 C. S. Cheng, G. C. Hoops, R. A. Earl and L. B. Townsend, Nucleosides
Nucleotides, 1997, 16, 347–364.
28 C. S. Cheng, B. C. Hinshaw, R. P. Panzica and L. B. Townsend, J. Am.
Chem. Soc., 1976, 98, 7870–7872.
29 T. Hashizume and J. A. McCloskey, Nucleic Acids Symp. Ser., 1994, 31,
137–138.
30 B. C. Hinshaw, J. F. Gerster, R. K. Robins and L. B. Townsend, J. Org.
Chem., 1970, 35, 236–241.
31 K. Ramasamy, R. K. Robins and G. R. Revankar, Tetrahedron, 1986,
42, 5869–5878.
32 T. Enyo, N. Arai, N. Nakane, A. Nicolaides and H. Tomioka, J. Org.
Chem., 2005, 70, 7744–7754.
¨
33 H. Go¨ker, S. Ozden, S. Yildiz and D. W. Boykin, Eur. J. Med. Chem.,
2005, 40, 1062–1069.
34 R. Roger and D. G. Neilson, Chem. Rev., 1961, 61, 179–211.
35 K. Scha¨rer, M. Morgenthaler, R. Paulini, U. Obst-Sander, D. W.
Banner, D. Schlatter, J. Benz, M. Stihle and F. Diederich, Angew. Chem.,
Int. Ed., 2005, 44, 4400–4404.
36 H. Ueno, K. Yokota, J.-I. Hoshi, K. Yasue, M. Hayashi, Y. Hase, I.
Uchida, K. Aisaka, S. Katoh and H. Cho, J. Med. Chem., 2005, 48,
3586–3604.
−
C12H15N6O5 requires 323.1109).
This journal is
The Royal Society of Chemistry 2007
Org. Biomol. Chem., 2007, 5, 3821–3825 | 3825
©