4336
H.-G. Lombart et al. / Bioorg. Med. Chem. Lett. 17 (2007) 4333–4337
Table 2. In vitro potency of butynylaminophenyl b-sulfone piperidine
hydroxamic acids 13
References and notes
1. Killar, L.; White, J.; Black, R.; Peschon, J. Ann. N.Y.
Acad. Sci. 1999, 878, 442.
O
O
S
O
H
N
HO
N
H
2. (a) Roberts, L.; McColl, G. J. Int. Med. J. 2004, 34, 687;
(b) Hyrich, K. L.; Silman, A. J.; Watson, K. D.;
Symmons, D. P. M. Ann. Rheum. Dis. 2004, 63, 1538; (c)
Feldmann, Marc.; Maini, Ravinder N. Annu. Rev. Immu-
nol. 2001, 19, 163.
3. (a) Kobelt, G.; Lindgren, P.; Singh, A.; Klareskog, L. Ann.
Rheum. Dis. 2005, 64, 1174; (b) Baumgartner, S. W.;
Fleischmann, R. M.; Moreland, L. W.; Schiff, M. H.;
Markenson, J.; Whitmore, J. B. J. Rheumatol. 2004, 31,
1532; (c) Terslev, L.; Torp-Pedersen, S.; Qvistgaard, E.;
Kristoffersen, H.; Rogind, H.; Danneskiold-Samsoe, B.;
Bliddal, H. Ann. Rheum. Dis. 2003, 62, 178.
4. (a) Asif, M.; Siddiqui, A.; Scott, L. J. Drugs 2005, 65,
2179; (b) Familian, A.; Voskuyl, A. E.; van Mierlo, G. J.;
Heijst, H. A.; Twisk, J. W. R.; Dijkmans, B. A. C.; Hack,
C. E. Ann. Rheum. Dis. 2005, 64, 1003; (c) St. Clair, E. W.;
van der Heijde, D. M. F. M.; Smolen, J. S.; Maini, R. N.;
Bathon, J. M.; Emery, P.; Keystone, E.; Shiff, M.; Kalden,
J. R.; Wang, B.; de Woody, K.; Weiss, R.; Baker, D.
Arthritis Rheum. 2004, 50, 3432.
5. Bang, L. M.; Keating, G. M. Biodrugs 2004, 18, 121;
Furst, D. E.; Schiff, M. H.; Flesihmann, R. M.; Strand, V.;
Birbira, C. A.; Compagnone, D. J. Rheumatol. 2003, 30,
2563.
N
R
13
Compound
R
TACEa MMP MMP
HWBb
-2a
-13a
13b
13i
13l
CO2CH2CH3
CO-(3-CH3Ph)
21
8.0
1230
1450
1000
>16,666 38
>16,666 35
>16,666 36
SO2CH(CH3)2 18
a IC50 (nM).
b Inhibition of LPS-stimulated TNF-a production in human whole
blood, IC50 (lM).
piperidine sulfone hydroxamate series of analogs. Thus,
in contrast to the 4,4-piperidine analogs, many of which
have low micromolar IC50s in HWB, the 3,3-piperidine
analogs tested are dramatically less active. For example,
compound 12k is the most potent member of the series
in HWB with an IC50 of 13 lM, and sulfonamide 12l
has an IC50 of 39 lM in HWB, while the corresponding
isopropyl sulfonamide 3 has an IC50 of 1.5 lM.12
6. For a recent review on TACE inhibitors, see: Skotnicki, J.
S.; Levin, J. I. Ann. Rep. Med. Chem. 2003, 38, 153; For
recent publications on TACE inhibitors from other
groups, see: (a) Gilmore, J. L.; King, B. W.; Harris, C.;
Maduskuie, T.; Mercer, S. E.; Liu, R.-Q.; Covington, M.
B.; Qian, M.; Ribadeneria, M. D.; Vaddi, K.; Trzaskos, J.
M.; Newton, R. C.; Decicco, C. P.; Duan, J. J.-W. Bioorg.
Med. Chem. Lett. 2006, 16, 2699, and references therein;
(b) Kamei, N.; Tanaka, T.; Kawai, K.; Miyawaki, K.;
Okuyama, A.; Murakami, Y.; Arakawa, Y.; Haino, M.;
Harada, T.; Shimano, M. Bioorg. Med. Chem. Lett. 2004,
14, 2897; (c) Tsukida, T.; Moriyama, H.; Inoue, Y.;
Kondo, H.; Yoshino, K.; Nishimura, S.-I. Bioorg. Med.
Chem. Lett. 2004, 14, 1569; (d) Letavic, M. A.; Barberia, J.
T.; Carty, T. J.; Hardink, J. R.; Liras, J.; Lopresti-
Morrow, L. L.; Mitchell, P. G.; Noe, M. C.; Reeves, L.
M.; Snow, S. L.; Stam, E. J.; Sweeney, F. J.; Vaughn, M.
L.; Yu, C. H. Bioorg. Med. Chem. Lett. 2003, 13, 3243,
and references therein; (e) Chen, J. J.; Dewdney, N.; Lin,
X.; Martin, R. L.; Walker, K. A. M.; Huang, J.; Chu, F.;
Eugui, E.; Mirkovich, A.; Kim, Y.; Sarma, K.; Arzeno,
H.; Van Wart, H. E. Bioorg. Med. Chem. Lett. 2003, 13,
3951; (f) Sawa, M.; Kurokawa, K.; Inoue, Y.; Kondo, H.;
Yoshino, K. Bioorg. Med. Chem. Lett. 2003, 13, 2021, and
references therein; (g) Kottirsch, G.; Koch, G.; Feifel, R.;
Neumann, U. J. Med. Chem. 2002, 45, 2289; (h) Rabino-
witz, M. H.; Andrews, R. C.; Becherer, J. D.; Bickett, D.
M.; Bubacz, D. G.; Conway, J. G.; Cowan, D. J.; Gaul,
M.; Glennon, K.; Lambert, M. H.; Leesnitzer, M. A.;
McDougald, D. L.; Moss, M. L.; Musso, D. L.; Rizzolio,
M. C. J. Med. Chem. 2001, 44, 4252, and references
therein; (i) Holms, J.; Mast, K.; Marcotte, P.; Elmore, I.;
Li, J.; Pease, L.; Glaser, K.; Morgan, D.; Michaelides, M.;
Davidsen, S. Bioorg. Med. Chem. Lett. 2001, 11,
2907.
In a final effort to achieve increased potency and selec-
tivity along with acceptable HWB activity a series of
three 3,3-piperidine sulfone hydroxamates bearing a
butynylamine P10 group were also prepared. Recent
studies have shown that compounds with this P10 moiety
have excellent selectivity over MMP-2 and -13.18 Buty-
nylaminophenyl b-sulfone 3,3-piperidine hydroxamic
acids 13b, 13i, and 13l were prepared by the reaction
of 6 with 4-aminothiophenol and subsequently following
the synthetic route described in Scheme 1. The in vitro
and HWB activities of compounds 13 are listed in Table
2. All of the butynylamine analogs were slightly less ac-
tive in the FRET assay than the corresponding oxygen
analogs (12b, 12i, and 12l), and were somewhat less
selective over MMP-2. However, replacement of the
oxygen atom with a nitrogen atom did significantly
improve the selectivity for TACE over MMP-13 in all
cases, to greater than 800-fold for 13b, and to greater
than 2000-fold for 13i. Unfortunately, the HWB activity
of these compounds was poor.
In summary, using structure-based methods focused on
capitalizing on the shape difference between the S1 pock-
ets of TACE and structurally related MMPs, we have
designed and synthesized a series of b-sulfone 3,3-piper-
idine hydroxamate TACE inhibitors. All of these ana-
logs show excellent, low nanomolar IC50 enzyme
activity in a FRET assay and good selectivity over
MMPs (up to 1100-fold).
7. Yoshihara, Y.; Nakamura, H.; Obata, K.; Yamada, H.;
Hayakawa, T.; Fijikawa, K.; Okada, Y. Ann. Rheum. Dis.
2000, 59, 455.
Acknowledgments
We thank Drs. Walter Massefski and Nelson Huang of the
Discovery Analytical Chemistry group for spectral data.
We thank Dr. Katherine Lee for reviewing this manuscript.
8. Renkiewicz, R.; Qiu, L.; Lesch, C.; Un, X.; Devalaraja,
R.; Cody, T.; Kaldjian, E.; Welgus, H.; Baragi, V.
Arthritis Rheum. 2003, 48, 1742.