Rh(4-X-Phebox-R) Complexes in Asymmetric Reductive Aldol Reactions
FULL PAPER
4.5 Hz, 1 H, OH), 3.73 (s, 3 H), 4.75 (dd, J = 8.4, 4.5 Hz, 1 H),
diazomethane for determination of the optical purity (HPLC)(elu-
7.26–7.41 (m, 5 H) ppm. 11-syn: 1H NMR (300 MHz, CDCl3): δ = ent: hexane/iPrOH, 97:3, flow rate: 1.0 mL/min): 96% ee for anti
1.13 (d, J = 6.9 Hz, 3 H), 3.68 (s, 3 H), 5.12 (d, J = 3.6 Hz, 1 H),
7.26–7.41 (m, 5 H) ppm. NMR spectra were consistent with the
authentic data previously reported in ref.[14a]
and 23% ee for syn. Retention time: 33.4 (syn, minor), 36.7 (syn,
major), 43.5 (anti, minor), 49.5 min. (anti, major). The absolute
configuration was not determined. 1H NMR (300 MHz, CDCl3):
15-anti: δ = 1.06 (d, J = 7.2 Hz, 3 H), 3.24 (dq, J = 7.2ϫ3 and
9.0 Hz, 1 H), 5.56 (d, J = 9.0 Hz, 1 H), 7.46–7.60 (m, 4 H), 7.84–
7.89 (m, 2 H), 8.27 (m, 1 H) ppm; 15-syn: δ = 1.11 (d, J = 7.2 Hz,
3 H, CH3), 6.10 (d, J = 2.1 Hz, 1 H, CHOH) ppm; Recrystallization
of the acid mixture from ether–hexane gave almost-pure acid 15-
12-anti/syn (Table 4, Entry 1): The reaction procedure was the same
as that of Entry 1, Table 1: tert-butyl acrylate (192 mg, 1.50 mmol).
1
A mixture of products 12-anti and 12-syn (96:4, determined by H
NMR) was obtained as a colorless oil. Yield: 195 mg (0.82 mmol),
82%. The optical purity was determined by HPLC analysis with
DAICEL-CHIRALPAK AS-H (eluent: hexane/iPrOH = 99:1, flow
rate: 1.0 mL/min) to be 93% ee (2R,3S) for anti and 10% ee
(2R,3R) for syn. Retention time: 8.9 (syn, 2R,3R), 11.4 (anti,
2S,3R), 13.4 (syn, 2S,3S), 15.1 min. (anti, 2R,3S). 12-anti: 1H NMR
(300 MHz, CDCl3): δ = 1.02 (d, J = 6.9 Hz, 3 H), 1.44 (s, 9 H),
2.67 (m, 1 H), 3.11 (br., 1 H), 4.70 (dd, J = 8.1, 4.8 Hz, 1 H), 6.91–
anti. M.p. 109–110 °C. IR (KBr disk): ν = 3500–2600 (br), 1720,
˜
1402, 1265 cm–1. 13C NMR (75 MHz, CDCl3): δ = 14.95, 46.90,
73.52, 123.4, 124.8, 125.6, 126.2, 128.7, 128.8, 130.9, 133.8, 136.5,
181.1 ppm. [α]2D3 = –13.1 (c 1.56, EtOH). C14H14O3 (230.26): calcd.
C 73.03, H 6.13; found C 72.93, H 6.12.
1
7.38 (m, 5 H) ppm. 12-syn: H NMR (300 MHz, CDCl3): δ = 1.10
Acknowledgments
(d, J = 7.2 Hz, 3 H), 1.40 (s, 9 H), 2.67 (m, 1 H), 3.11 (br., 1 H),
5.03 (dd, J = 4.2, 3.0 Hz, 1 H), 6.91–7.38 (m, 5 H) ppm. NMR
spectra were consistent with the authentic data previously reported
in ref.[9]
This work was supported by the Grant-in-Aid for Scientific Re-
search for the Japan Society for the Promotion of Science. T. S. is
supported by the Research Fellowship of the Japan Society for the
Promotion of Science.
13-anti/syn (Table 4, Entry 6): The reaction procedure was the same
as that of Entry 1, Table 1: tert-butyl acrylate (192 mg, 1.50 mmol)
and 1-naphthaldehyde (156 mg, 1.00 mmol). A mixture of products
13-anti and 13-syn (98:2, determined by 1H NMR) was obtained
as a colorless oil. Yield: 263 mg (0.92 mmol), 92%. The optical
purity was determined by HPLC analysis with DAICEL-CHI-
RALPAK AD (eluent: hexane/iPrOH = 99:1, flow rate: 2.0 mL/
min) to be 95% ee (2R,3S) for anti and 31% ee for syn. Retention
time: 11.9 (syn, major), 15.1 (syn, minor), 17.6 (anti, 2R,3S),
[1] H. Nishiyama, S. Yamaguchi, M. Kondo, K. Itoh, J. Org.
Chem. 1992, 57, 4306.
[2] a) S.-B. Park, K. Murata, H. Matsumoto, H. Nishiyama, Tetra-
hedron: Asymm. 1995, 6, 2487; b) H. Nishiyama in Advances
in Catalytic Processes (Ed.: M. P. Doyle), JAI Press, London,
1997, vol. 2 (Asymmetric Catalysis) pp. 153–188.
[3] E. N. Jacobsen, W. Zhang, M. L. Güller, J. Am. Chem. Soc.
1991, 113, 6703.
[4] T. Hamada, T. Fukuda, H. Imanishi, T. Katsuki, Tetrahedron
1996, 52, 515.
[5] a) T. V. RajanBabu, T. A. Ayers, A. L. Casalnuovo, J. Am.
Chem. Soc. 1994, 116, 4101; b) T. V. RajanBabu, A. L. Casal-
nuovo, Pure Appl. Chem. 1994, 66, 1535; c) N. Nomura, Y. C.
Mermet-Bouvier, T. V. RajanBabu, Synlett 1996, 745.
[6] G. Pioda, A. Togni, Tetrahedron: Asymmetry 1998, 9, 3903.
[7] L. A. van de Kuli, D. M. Grove, R. A. Gossage, J. W. Zwikker,
L. W. Jenneskens, W. Drenth, G. van Koten, Organometallics
1997, 16, 4985.
1
24.3 min. (anti, 2S,3R). 13-anti: H NMR (300 MHz, CDCl3): δ =
1.12 (d, J = 7.5 Hz, 3 H), 1.52 (s, 9 H), 3.09 (dq, J = 7.5ϫ3 and
6.9 Hz, 1 H), 3.67 (d, J = 4.8 Hz, 1 H), 5.55 (dd, J = 7.8, 4.8 Hz,
1 H), 7.50–7.65 (m, 4 H), 7.70–7.93 (m, 2 H), 8.27 (d, J = 8.1 Hz,
1
1 H) ppm. 13-syn: H NMR (300 MHz, CDCl3): δ = 1.14 (d, J =
7.2 Hz, 3 H), 1.50 (s, 9 H), 2.99 (dq, J = 7.2ϫ3 and 3.0 Hz, 1 H),
3.28 (br., 1 H), 5.97 (br. s, 1 H), 7.50–7.65 (m, 4 H), 7.70–7.93 (m,
2 H), 8.27 (d, J = 8.2 Hz, 1 H) ppm. NMR spectra were consistent
with the authentic data previously reported in ref.[9]
[8] M. Q. Slagt, G. Rodríguez, M. M. P. Grutters, R. J. M. K. Geb-
bink, W. Klopper, L. W. Jenneskens, M. Lutz, A. L. Spek, G.
van Koten, Chem. Eur. J. 2004, 10, 1331.
[9] H. Nishiyama, T. Shiomi, Y. Tsuchiya, I. Matsuda, J. Am.
Chem. Soc. 2005, 127, 6972.
[10] a) Y. Kanazawa, Y. Tsuchiya, K. Kobayashi, T. Shiomi, J.-I.
Itoh, M. Kikuchi, Y. Yamamoto, H. Nishiyama, Chem. Eur.
J. 2006, 12, 63; b) Y. Tsuchiya, Y. Kanazawa, T. Shiomi, K.
Kobayashi, H. Nishiyama, Synlett 2004, 2493.
[11] For chemistry of Rh-Phebox, see a) Y. Motoyama, N. Makih-
ara, Y. Mikami, K. Aoki, H. Nishiyama, Chem. Lett. 1997,
951; b) Y. Motoyama, H. Narusawa, H. Nishiyama, Chem.
Commun. 1999, 131; c) Y. Motoyama, Y. Koga, H. Nishiyama,
Tetrahedron 2001, 57, 853; d) Y. Motoyama, M. Okano, H.
Narusawa, N. Makihara, K. Aoki, H. Nishiyama, Organome-
tallics 2001, 20, 1580; e) Y. Motoyama, K. Shimozono, K.
Aoki, H. Nishiyama, Organometallics 2002, 21, 1684; f) Y. Mo-
toyama, Y. Koga, K. Kobayashi, K. Aoki, H. Nishiyama,
Chem. Eur. J. 2002, 8, 2968; g) Y. Motoyama, H. Nishiyama,
Synlett 2003, 1883. For polymer supported Rh-Phebox, see h)
A. Weissberg, M. Portnoy, Chem. Commun. 2003, 1538. For
Pd- and Pt-Phebox complexes, see i) Y. Motoyama, Y. Mikami,
H. Kawakami, K. Aoki, H. Nishiyama, Organometallics 1999,
18, 3584; j) Y. Motoyama, H. Kawakami, K. Shimozono, K.
Aoki, H. Nishiyama, Organometallics 2002, 21, 3408; k) Y. Mo-
toyama, H. Nishiyama in Latest Frontiers of Organic Synthesis
14-anti/syn (Table 5, Entry 3): The reaction procedure was the same
as that of Entry 1, Table 1: trimethylsilyl acrylate (216 mg,
1.50 mmol) and 6 (6.8 mg, 0.010 mmol). After work up, the crude
product was purified by chromatography with ethyl acetate as an
eluent to give a mixture of desired products 14-anti and 14-syn
1
(91:9, determined by H NMR) as a colorless solid. Yield: 168 mg
(0.93 mmol), 93%. Some of the product was converted into methyl
ester 11 with trimethylsilyl diazomethane for determination of the
optical purity (HPLC): 88% ee (2R,3S) for anti and 37% ee
(2R,3R) for syn. 1H NMR (300 MHz, CDCl3): 14-anti: δ = 1.03 (d,
J = 7.5 Hz, 3 H), 2.86 (dq, J = 7.5ϫ3 and 9.0 Hz, 1 H), 4.77 (d,
J = 9.0 Hz, 1 H), 7.30–7.40 (m, 5 H) ppm. 14-syn: δ = 1.15 (d, J =
7.2 Hz, 3 H, CH3), 5.19 (d, J = 3.9 Hz, 1 H, CHOH) ppm. Mixture
of 14: C10H12O3 (180.20): calcd. C 66.65, H 6.77; found C 66.43,
H 6.76.
15-anti/syn (Table 5, Entry 4): The reaction procedure was the same
as that of Entry 1, Table 1: trimethylsilyl acrylate (216 mg,
1.50 mmol) and 1-naphthaldehyde (156 mg, 1.00 mmol). After
work up, the crude product was purified by chromatography with
ethyl acetate as an eluent to give a mixture of desired products 15-
anti and 15-syn (91:9 determined by 1H NMR) as a colorless solid.
Yield: 196 mg (0.85 mmol), 85%. Some of the product was con-
verted into the corresponding methyl ester with trimethylsilyl
Eur. J. Org. Chem. 2006, 5594–5600
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5599