G. M. ZATS ET AL.
3 Fjell CD, Hiss JA, Hancock RE Schneider G. Designing antimicrobial
peptides: form follows function. Nat. Rev. Drug Discov. 2011; 11: 37–51.
4 Jenssen H, Hamill P Hancock RE. Peptide antimicrobial agents. Clin.
Microbiol. Rev. 2006; 19: 491–511.
28 Sivertsen A, Isaksson J, Leiros H-K, Svenson J, Svendsen J-S Brandsdal B.
Synthetic cationic antimicrobial peptides bind with their hydrophobic
parts to drug site II of human serum albumin. BMC Struct. Biol. 2014;
14: 1–14.
5 Cochrane SA, Lohans CT, Brandelli JR, Mulvey G, Armstrong GD
Vederas JC. Synthesis and structure–activity relationship studies of N-
terminal analogues of the antimicrobial peptide tridecaptin A1. J. Med.
Chem. 2014; 57: 1127–1131.
29 Mwande-Maguene G, Jakhlal J, Lekana-Douki J-B, Mouray E,
Bousquet T, Pellegrini S, Grellier P, Ndouo FST, Lebibi
J
Pelinski L. One-pot microwave-assisted synthesis and antimalarial
activity of ferrocenyl benzodiazepines. New J. Chem. 2011; 35:
2412–2415.
6 Toke O. Antimicrobial peptides: new candidates in the fight against
bacterial infections. Biopolymers 2005; 80: 717–735.
7 Siano A, Húmpola MV, de Oliveira E, Albericio F, Simonetta AC,
30 Horton DA, Bourne GT Smythe ML. The combinatorial synthesis of
bicyclic privileged structures or privileged substructures. Chem. Rev.
2003; 103: 893–930.
Lajmanovich
R Tonarelli GG. Antimicrobial peptides from skin
secretions of hypsiboas pulchellus (Anura: Hylidae). J. Nat. Prod. 2014;
77: 831–841.
8 Zasloff M. Antimicrobial peptides of multicellular organisms. Nature
31 Carter MC, Alber DG, Baxter RC, Bithell SK, Budworth J, Chubb A,
Cockerill GS, Dowdell VC, Henderson EA, Keegan SJ, Kelsey RD,
Lockyer MJ, Stables JN, Wilson LJ Powell KL. 1,4-Benzodiazepines as
inhibitors of respiratory syncytial virus. J. Med. Chem. 2006; 49:
2311–2319.
32 Anzini M, Braile C, Valenti S, Cappelli A, Vomero S, Marinelli L,
Limongelli V, Novellino E, Betti L, Giannaccini G, Lucacchini A,
Ghelardini C, Norcini M, Makovec F, Giorgi G Ian Fryer R. Ethyl 8-fluoro-
6-(3-nitrophenyl)-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate
as novel, highly potent, and safe antianxiety agent. J. Med. Chem. 2008;
51: 4730–4743.
33 Ettari R, Nizi E, Di Francesco ME, Micale N, Grasso S, Zappalà M, Vičík R
Schirmeister T. Nonpeptidic vinyl and allyl phosphonates as falcipain-2
inhibitors. ChemMedChem 2008; 3: 1030–1033.
34 Kavali JR, Badami BV. 1,5-Benzodiazepine derivatives of 3-arylsydnones:
synthesis and antimicrobial activity of 3-aryl-4-[2′-aryl-2′,4′,6′,7′-
tetrahydro-(1′H)-1′,5′-benzodiazepine-4′-yl]sydnones. Il Farmaco 2000;
55: 406–409.
2002; 415: 389–395.
9 Brogden KA. Antimicrobial peptides: pore formers or metabolic
inhibitors in bacteria? Nat. Rev. Microbiol. 2005; 3: 238–250.
10 Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and
resistance. Pharmacol. Rev. 2003; 55: 27–55.
11 Giuliani A, Pirri G Nicoletto S. Antimicrobial peptides: an overview of a
promising class of therapeutics. Cent. Eur. J. Biol. 2007; 2: 1–33.
12 Koczulla AR, Bals R. Antimicrobial peptides: current status and
therapeutic potential. Drugs 2003; 63: 389–406.
13 Marr AK, Gooderham WJ Hancock RE. Antibacterial peptides for
therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol.
2006; 6: 468–472.
14 Thaker HD, Sgolastra F, Clements D, Scott RW Tew GN. Synthetic mimics
of antimicrobial peptides from triaryl scaffolds. J. Med. Chem. 2011; 54:
2241–2254.
15 Ghosh C, Manjunath GB, Akkapeddi P, Yarlagadda V, Hoque J, Uppu DS,
Konai MM Haldar J. Small molecular antibacterial peptoid mimics: the
simpler the better!. J. Med. Chem. 2014; 57: 1428–1436.
16 Karstad R, Isaksen G, Wynendaele E, Guttormsen Y, De Spiegeleer B,
Brandsdal BO, Svendsen JS Svenson J. Targeting the S1 and S3 subsite
of trypsin with unnatural cationic amino acids generates antimicrobial
peptides with potential for oral administration. J. Med. Chem. 2012; 55:
6294–6305.
35 Singla RK, Kumar A, Khan S, Shrivastava R, Bhat GV Jagani H. Evaluation
of antimicrobial activity of 3-(4-1H-Indol-3-yl)-(2,3-dihydro-1H-benzo[b]
diazepin-2-yl)-2H-chromen-2-one. Indo-Global J. Pharm. Sci. 2011; 1:
127–133.
36 Joshi RKY, Synthesis C. Spectral studies and biological activity of 3H-1, 5-
benzodiazepine derivatives. ARKIVOC 2007; xiii: 142–149.
37 Goswami M, Jawali N. N-acetylcysteine-mediated modulation of
bacterial antibiotic susceptibility. Antimicrob. Agents Chemother. 2010;
54: 3529–3530.
17 Dehsorkhi A, Castelletto V Hamley IW. Self-assembling amphiphilic
peptides. J. Pept. Sci. 2014; 20: 453–467.
38 Silverstein KA, Moskal WA, Jr, Wu HC, Underwood BA, Graham MA,
Town CD VandenBosch KA. Small cysteine-rich peptides resembling
antimicrobial peptides have been under-predicted in plants. Plant J.
2007; 51: 262–280.
39 Klüver E, Schulz-Maronde S, Scheid S, Meyer B, Forssmann W-G
Adermann K. Structure–activity relation of human β-defensin 3:
influence of disulfide bonds and cysteine substitution on antimicrobial
activity and cytotoxicity†. Biochemistry 2005; 44: 9804–9816.
40 Silveira LFM, Baca P, Arias-Moliz MT, Rodriguez-Archilla A Ferrer-Luque CM.
Antimicrobial activity of alexidine alone and associated with N-
acetylcysteine against Enterococcus faecalis biofilm. In J. Oral Sci 2013; 5:
146–149.
41 Selnick HG, Liverton NJ, Baldwin JJ, Butcher JW, Claremon DA,
Elliott JM, Freidinger RM, King SA, Libby BE, McIntyre CJ,
Pribush DA, Remy DC, Smith GR, Tebben AJ, Jurkiewicz NK,
Lynch JJ, Salata JJ, Sanguinetti MC, Siegl PK, Slaughter DE Vyas K.
Class III antiarrhythmic activity in vivo by selective blockade of the
slowly activating cardiac delayed rectifier potassium current IKs by
(R)-2-(2,4-trifluoromethyl)-N-[2-oxo-5-phenyl-1-(2,2,2-trifluoroethyl)-
2, 3-dihydro-1H-benzo[e][1,4]diazepin-3-yl]acetamide. J. Med. Chem.
1997; 40: 3865–3868.
18 Domingues TM, Buri MV, Daffre S, Campana PT, Riske KA Miranda A.
Structure-activity relationship of Trp-containing analogs of the
antimicrobial peptide gomesin. J. Pept. Sci. 2014; 20: 421–428.
19 Zhou C, Wang M, Zou K, Chen J, Zhu Y Du J. Antibacterial polypeptide-
grafted chitosan-based nanocapsules as an ‘armed’ carrier of
anticancer and antiepileptic drugs. ACS Macro Lett. 2013; 2: 1021–1025.
20 Baldassarre L, Pinnen F, Cornacchia C, Fornasari E, Cellini L, Baffoni M
Cacciatore I. Synthesis of short cationic antimicrobial peptidomimetics
containing arginine analogues. J. Pept. Sci. 2012; 18: 567–578.
21 Guo C, Pan L, Xiao S, Chen H Jiang Z. Short simple linear peptides mimic
antimicrobial complex cyclodecapeptides based on the putative
pharmacophore. Med. Chem. 2014; 4: 233–329.
22 Haug BE, Stensen W, Stiberg T Svendsen JS. Bulky nonproteinogenic
amino acids permit the design of very small and effective cationic
antibacterial peptides. J. Med. Chem. 2004; 47: 4159–4162.
23 Saravanan R, Li X, Lim K, Mohanram H, Peng L, Mishra B, Basu A, Lee JM,
Bhattacharjya S Leong SS. Design of short membrane selective
antimicrobial peptides containing tryptophan and arginine residues for
improved activity, salt-resistance, and biocompatibility. Biotechnol.
Bioeng. 2014; 111: 37–49.
24 Faccone D, Veliz O, Corso A, Noguera M, Martinez M, Payes C,
Semorile L Maffia PC. Antimicrobial activity of de novo designed
cationic peptides against multi-resistant clinical isolates. Eur. J. Med.
Chem. 2014; 71: 31–35.
42 Cepanec I, Litvić M Pogorelić I. Efficient synthesis of 3-hydroxy-1,4-
benzodiazepines oxazepam and lorazepam by new acetoxylation
reaction of 3-position of 1,4-benzodiazepine ring. Org. Process Res. Dev.
2006; 10: 1192–1198.
25 Isaksson J, Brandsdal BO, Engqvist M, Flaten GE, Svendsen JSM
Stensen W. A synthetic antimicrobial peptidomimetic (LTX 109):
stereochemical impact on membrane disruption. J. Med. Chem. 2011;
54: 5786–5795.
26 Mahindra A, Bagra N, Wangoo N, Khan SI, Jacob MR Jain R. Discovery of
short peptides exhibiting high potency against Cryptococcus
neoformans. ACS Med. Chem. Lett. 2014; 5: 315–320.
27 Albada HB, Prochnow P, Bobersky S, Langklotz S, Bandow JE
Metzler-Nolte N. Short antibacterial peptides with significantly reduced
hemolytic activity can be identified by a systematic L-to-D exchange
scan of their amino acid residues. ACS Comb. Sci. 2013; 15: 585–592.
43 Kazmierski WM., Ed. Peptidomimetics Protocols. Springer, Berlin, 1999.
44 Evans BE, Rittle KE, Bock MG, DiPardo RM, Freidinger RM, Whitter WL,
Gould NP, Lundell GF Homnick CF. Design of nonpeptidal ligands for a
peptide receptor: cholecystokinin antagonists. J. Med. Chem. 1987; 30:
1229–1239.
45 Tezer N. Conformation and tautomerizm of the 2-methyl-4-pyridin-2’-yl-
1,5-benzodiazepine molecule. An ab initio study. J. Mol. Model. 2008; 14:
11–20.
46 Cortes CE, Becerra LMI, Osornio PYM, Dıá z TE Jankowski K. 2D NMR
analysis of highly restricted internal rotation in 2-methylthio-3H-4-p-
bromophenyl)-7-[(ortho- and para-substituted)-phenylthio]-1,5-benzo
wileyonlinelibrary.com/journal/jpepsci
Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
J. Pept. Sci. 2015; 21: 512–519