10.1002/anie.201813512
Angewandte Chemie International Edition
I.
In conclusion, we have developed a new method for the
rhodium(II)-catalyzed decarbenation of 7-substituted 1,3,5-
cycloheptatrienes, generating intermediates which display the
typical reactivity of donor RhII carbenes. It is remarkable how, by
tuning the substituents on the RhII carbene (from an acetate with
EDA to a vinyl group with 3), it is possible to achieve an opposite
reactivity (from a Buchner ring expansion to a retro-Buchner–
cyclopropanation) using exactly the same catalytic system,
[Rh(TFA)2]2. These RhII carbenes react with a broad range of
alkenes, resulting in an improved retro-Buchner–cyclopropanation
sequence. The same intermediates also react with silanes, which
represents the first example of an intermolecular insertion reaction
of a metal carbene generated via retro-Buchner. Finally, we
showed that it is possible to oxidatively trap these carbenes to give
aldehydes, leading to the development of an iterative protocol for
the vinylogation of aldehydes. This was applied to the preparation
of conjugated E-polyenes and to the total synthesis of navenones
B and C.
R
Ph
Si(iPr)3
[Rh]a
Temp
R
(iPr)3SiH
+
7a
6a
Ph
R = Me; 25 ºC: 47%, 60 ºC: 64%
R = H; 25 ºC: n/d, 60 ºC: n/d
R
3a/3aH7
II.
[Rh]a
Ph
Si(iPr)3
H/D
(iPr)3SiH/D
6a/6a-d1
+
Ph
Ph
7a/7a-d1 (1.3 ratio)
3a
4a
4a + 6a 4a + 18 6a + 18
III.
26%
25%
-
11%
-
-
Ph
Ph
Ph
[Rh]a
(iPr)3SiH
trace
trace
3a
+
6a
18
Si(iPr)3
mixture of
two nucleophiles
(2+2 equiv)
47%
Ph2SO
Ph
O
IV.
OMe
CF3
Me3CHT
3b (1 equiv)
30%
28%
Acknowledgements
Ar
Ar
Ar
OMe
[Rh]a
+
32%
27%
29%
14%
Si(iPr)3
We thank the Agencia Estatal de Investigación (AEI)/FEDER,
UE (CTQ2016-75960-P and FPI predoctoral fellowship to M.M.),
the AGAUR (2017 SGR 1257), and CERCA Program/Generalitat
de Catalunya for financial support. We also thank the ICIQ X-ray
diffraction unit and the CELLEX-ICIQ HTE laboratory.
nucleophile
(2 equiv)
Me3CHT
Ar
O
3c (1 equiv)
CF3
Scheme 7. Mechanistic investigations. (I) Comparison between first and second
generation of cycloheptatrienes. (II) Deuteration experiments and kinetic isotope
effect. (III) Competition experiments between each pair of nucleophiles. (IV)
Competition experiments between 3b and 3c. [a] Unless otherwise stated, 1 equiv
of cycloheptatriene with 4 equiv of nucleophile were stirred in 1,2-DCE (0.1 M) at
60 ºC for 16 h. Yields and ratios determined by 1H NMR using Ph2CH2 as internal
standard.
Keywords: rhodium catalysis · carbenes · retro-Buchner reaction
· silanes · total synthesis
[1] a) A. de Meijere, T.-J. Schulz, R. R. Kostikov, F. Graupner, T. Murr, T.
Bielfeldt, Synthesis 1991, 547–560; b) V. K. Singh, A. DattaGupta, G. Sekar,
Synthesis 1997, 137–148; c) H. M. L. Davies, P. R. Bruzinski, D. H. Lake, N.
Kong, M. J. Fall, J. Am. Chem. Soc. 1996, 118, 6897–6907; d) M. P. Doyle,
M. A. McKervey, T. Ye, in Moder Catalytic Methods for Organic Synthesis
with Diazo Compounds: From Cyclopropanes to Ylides, Wiley: New York,
1998, 163–220; e) H. M. L. Davies, E. G. Antoulinakis, Intermolecular Metal-
Catalyzed Carbenoid Cyclopropanations in Org. React. 2001, 57, 1; f) H.
Wang, D. M. Guptill, A. Varela-Alvarez, D. G. Musaev, H. M. L. Davies,
Chem. Sci. 2013, 4, 2844–2850.
[8] a) T. Sammakia, in Encyclopedia of Reagents for Organic Synthesis, Ed. L.
A. Paquette, Wiley: Chichester, England, 1995, 4, 1512; b) V. K. Aggarwal,
E. Alonso, I. Bae, G. Hynd, K. M. Lydon, M. J. Palmer, M. Patel, M.
Porcelloni, J. Richardson, R. A. Stenson, J. R. Studley, J.-L. Vasse, C. L.
Winn, J. Am. Chem. Soc. 2003, 125, 10926–10940; c) J. R. Fulton, V. K.
Aggarwal, J. de Vicente, Eur. J. Org. Chem 2005, 1479–1492.
[9] M. P. Doyle, J. H. Griffin, V. Bagheri, R. L. Dorow, Organometallics 1984, 3,
53–61.
[10] Reviews on the generation of RhII carbenes: a) M. Jia, S. Ma, Angew. Chem.
Int. Ed. 2016, 55, 9134–9166; Angew. Chem. 2016, 128, 9280–9313; from
triazoles: b) S. Chuprakov, S. W. Kwok, L. Zhang, L. Lercher, V. V. Fokin, J.
Am. Chem. Soc. 2009, 131, 18034–18035; c) Y. Shi, A. V. Gulevich, V.
Gevorgyan, Angew. Chem. Int. Ed. 2014, 53, 14191–14195; Angew. Chem.
2014, 126, 14415–14419; d) T. Miura, T. Nakamuro, C.-J. Liang, M.
Murakami, J. Am. Chem. Soc. 2014, 136, 15905–15908; e) Y. Chen, S.
Dong, X. Xu, X. Liu, X. Feng, Angew. Chem. Int. Ed. 2018, DOI:
[2] a) M. P. Doyle, D. C. Forbes, Chem. Rev. 1998, 98, 911–936; b) H. M. L.
Davies, J. R. Manning, Nature 2008, 451, 417–424. c) M. P. Doyle, R. Duffy,
M. Ratnikov, L. Zhou, Chem. Rev. 2010, 110, 704–724; d) H. M. L. Davies,
D. Morton, Chem. Soc. Rev. 2011, 40, 1857–1869; e) K. Liao, S. Negretti,
D. G. Musaev, J. Bacsa, H. M. L. Davies, Nature 2016, 533, 230–234; f) K.
Liao, T. C. Pickel, V. Boyarskikh, J. Bacsa, D. G. Musaev, H. M. L. Davies,
Nature 2017, 551, 609–613.
10.1002/anie.20180410;
Angew.
Chem.
2018,
DOI:
[3] a) S.-H. Lee, B. Clapham, G. Koch, J. Zimmermann, K. D. Janda, Org. Lett.
2003, 5, 511–514.
10.1002/ange.201810410; from phenyliodonium ylides: f) B. Moreau, A. B.
Charette, J. Am. Chem. Soc. 2005, 127, 18014–18015; from cyclopropenes:
g) A. Archambeau, F. Miege, C. Meyer, J. Cossy, Angew. Chem. Int. Ed.
2012, 51, 11540–11544; Angew. Chem. 2012, 124, 11708–11712.
[11] a) C. R. Solorio-Alvarado, A. M. Echavarren, J. Am. Chem. Soc. 2010, 132,
11881–11883; for a review, see: b) M. Mato, C. García-Morales, A. M.
Echavarren, ChemCatChem, 2018, DOI: 10.1002/cctc.201801201.
[12] a) C. R. Solorio-Alvarado, Y. Wang, A. M. Echavarren, J. Am. Chem. Soc.
2011, 133, 11952–11955; b) B. Herlé, P. M. Holstein, A. M. Echavarren, ACS
Catal. 2017, 7, 3668–3675.
[4] a) A. DeAngelis, M. T. Taylor, J. M. Fox, J. Am. Chem. Soc. 2009, 131,
1101–1105; b) Y. Xia, D. Qiu, J. Wang, Chem. Rev. 2017, 117, 13810–
13889.
[5] a) V. K. Aggarwal, E. Alonso, G. Hynd, K. M. Lydon, M. J. Palmer, M.
Porcelloni, J. R. Studley, Angew. Chem. Int. Ed. 2001, 40, 1430–1433;
Angew. Chem. 2001, 113, 1479–1482; b) V. K. Aggarwal, J. de Vicente, R.
V. Bonnert, Org. Lett. 2001, 3, 2785–2788; c) R. P. Wurz, A. B. Charette,
Org. Lett. 2002, 4, 4531–4533; d) B. Morandi, E. M. Carreira, Science 2012,
335, 1471–1474.
[13] a) Y. Wang, P. R. McGonigal, M. Besora, A. M. Echavarren, J. Am. Chem.
Soc. 2014, 136, 801–809; b) Y. Wang, M. E. Muratore, Z. Rhong, A. M.
Echavarren, Angew. Chem. Int. Ed. 2014, 53, 14022–14026; Angew. Chem.
2014, 126, 14246–14250; c) X. Yin, M. Mato, A. M. Echavarren, Angew.
Chem. Int. Ed. 2017, 56, 14591–14595; Angew. Chem. 2017, 129, 14783–
14787.
[6] a) K. P. Kornecki, J. F. Briones, V. Boyarskikh, F. Fullilove, J. Autschbach,
K. E. Schrote, K. M. Lancaster, H. M. L. Davies, J. F. Berry, Science 2013,
342, 351–354; b) C. Werlé, R. Goddard, A. Fürstner, Angew. Chem. Int. Ed.
2015, 54, 15452–15456; Angew. Chem. 2015, 127, 15672–15676.
[7] a) H. M. L. Davies, R. E. J. Beckwith Chem. Rev. 2003, 103, 2861–2904. b)
D. Zhu, J. Ma, K. Luo, H. Fu, L. Zhang, S. Zhu, Angew. Chem. Int. Ed. 2016,
55, 8452–8456; Angew. Chem. 2016, 128, 8592–8596.
[14] M. Mato, B. Herlé, A. M. Echavarren, Org. Lett. 2018, 20, 4341–4345.
This article is protected by copyright. All rights reserved.