8282
J . Org. Chem. 1997, 62, 8282-8283
Sch em e 1
Syn th esis of 1,4-Dik eton es: Un u su a l
Cou p lin g of Tin En ola tes w ith r-Ch lor o
Keton es Ca ta lyzed by Zin c Ha lid es
Makoto Yasuda, Shoki Tsuji, Ikuya Shibata, and
Akio Baba*
Department of Applied Chemistry, Faculty of Engineering,
Osaka University, 2-1 Yamadaoka, Suita, Osaka 565, J apan
at the halide carbon.9 R-Halocarbonyls could be the
most practical substrates if their reaction manner would
be controlled selectively, since a variety of them are
available and their preparation methods are well-known.8
We have already attained partial success in this work
for the synthesis of 1,4-diketones by the coupling of
R-bromo ketones with highly coordinated tin enolates.10,11
In the highly coordinated tin system, a direct nucleo-
philic substitution at the bromide moiety occurs selec-
tively.10b This system, however, entails serious defects
and limitations; (i) it requires more than an equimolar
amount of additives as ligands to tin and (ii) it was
not applicable to the coupling with R-chloro ketones
at all.
Herein, we report a novel reaction course for the
catalytic synthesis of 1,4-diketones from tin enolates 1
and R-chloro ketones 2. The carbonyl addition of tin
enolate and the subsequent rearrangement proceed via
zinc halide catalysis, and no direct substitution occurs.
This new system greatly expands the scope for the
synthesis of unsymmetric 1,4-diketones owing to the
direct use of R-chlorinated ketones.12
Received September 3, 1997
1,4-Diketones are widely used as synthetic building
blocks for further elaboration into furans, cyclopenten-
ones, or pyrroles.1 One of the most versatile processes
to 1,4-diketones is the conjugate acylation of an enone,
and a variety of acyl anion equivalents have been
developed.2 Considering the applicability, a linkage of
two carbonylmethyl units could be a powerful synthetic
method for the synthesis of various types of 1,4-diketones.
Although a number of homo-coupling reactions of carbo-
nylmethyl radicals,3 metal enolates,4 or R-halocarbonyls5
were reported, the cross-coupling of carbonylmethyl units
remains a challenging problem.6 The most straightfor-
ward process into unsymmetric 1,4-diketones is the
coupling between the carbonylmethyl anion and carbo-
nylmethyl cation (eq 1). Thus, many groups have devel-
oped different types of carbonylmethyl cation equivalents
masked at the carbonyl moiety for the preparation of 1,4-
diketones.7
Initially, we attempted the coupling of the tin enolate
1a with three different types of R-chloro ketones 2a -c
as shown in Scheme 1 and Table 1. Under uncatalyzed
conditions, only aldol-type reactions were observed, af-
fording the functionalyzed chlorohydrin derivatives 4a -c
via carbonyl addition (Table 1, entries 1, 3, and 5) without
any 1,4-diketones 3.13 Tin enolates inherently attack to
the carbonyl carbon selectively rather than the halide
carbon.13-15 Gratifyingly, a dramatic change in the reac-
tion course was achieved by the addition of a catalytic
amount of ZnCl2, affording the 1,4-diketones 3 exclusively
(Table 1, entries 2, 4, and 6).
The direct use of R-halocarbonyl compounds as the
carbonylmethyl cation equivalent has been avoided7h
owing to their multiple reactivity8 such as carbonyl
addition or R-proton abstraction besides the substitution
(1) (a) Bosshard, P.; Eugster, C. H. Adv. Heterocycl. Chem. 1966, 7,
384-387. (b) Ellison, R. A. Synthesis 1973, 397-412. (c) Baltazzi, E.;
Krimen, L. I. Chem. Rev. (Washington, D.C.) 1963, 63, 511-556.
(2) (a) Corey, E. J .; Hegedus, L. S. J . Am. Chem. Soc. 1969, 91,
4926-4928. (b) McMurry, J . E.; Melton, J . J . Am. Chem. Soc. 1971,
93, 5309-5311. (c) Mukaiyama, T.; Narasaka, K.; Furusato, M. J . Am.
Chem. Soc. 1972, 94, 8641-8642. (d) Katritzky, A. R.; Yang, Z.; Lam,
J . N. J . Org. Chem. 1991, 56, 6917-6923. (e) Kubota, Y.; Nemoto, H.;
Yamamoto, Y. J . Org. Chem. 1991, 56, 7195-7196. (f) Katritzky, A.
R.; Lang, H.; Wang, Z.; Lie, Z. J . Org. Chem. 1996, 61, 7551-7557.
(3) Kharasch, M. S.; Mcbay, H. C.; Urry, W. H. J . Am. Chem. Soc.
1948, 70, 1269-1274.
(4) (a) Rathke, M. W.; Lindert, A. J . Am. Chem. Soc. 1971, 93, 4605-
4606. (b) Ito, Y.; Konoike, T.; Harada, T.; Saegusa, T. J . Am. Chem.
Soc. 1977, 99, 1487-1493. (c) Moriarty, R.; Prakash, O.; Duncan, M.
P. J . Chem. Soc., Perkin Trans. 1 1987, 559-561. (d) Fujii, T.; Hirao,
T.; Ohshiro, Y. Tetrahedron Lett. 1992, 33, 5823-5826. (e) Paquette,
L. A.; Bzowej, E. I.; Branan, B. M.; Stanton, K. J . J . Org. Chem. 1995,
60, 7277-7283.
(5) (a) Chassin, C.; Schmidt, E. A.; Hoffmann, H. M. R. J . Am. Chem.
Soc. 1974, 96, 606-608. (b) De Kimpe, N.; Yao, Z.-P.; Schamp, N.
Tetrahedron Lett. 1986, 27, 1707-1710. (c) Iyoda, M.; Sakaitani, M.;
Kojima, A.; Oda, M. Tetrahedron Lett. 1985, 26, 3719-3722.
(6) The cross-coupling into unsymmetric 1,4-diketones necessitated
strictly controlled conditions; see ref 4b,d.
(7) (a) Miyano, M.; Dorn, C. R. J . Org. Chem. 1972, 37, 268-274.
(b) Brown, E.; Ragault, M. Tetrahedron Lett. 1973, 1927-1930. (c)
Cuvigny, T.; Larcheveque, M.; Normant, H. Tetrahedron Lett. 1974,
1237-1240. (d) Stork, G.; J ung, M. E. J . Am. Chem. Soc. 1974, 96,
3682-3686. (e) Miyashita, M.; Yanami, T.; Yoshikoshi, A. J . Am. Chem.
Soc. 1976, 98, 4679-4681. (f) J acobson, R. M.; Raths, R. A.; McDonald,
J . H., III J . Org. Chem. 1977, 42, 2545-2549. (g) Dauben, W. G.; Hart,
D. J . J . Org. Chem. 1977, 42, 3787-3793. (h) Sum, P. E.; Weiler, L.
Can. J . Chem. 1978, 56, 2301-2304.
In the course of our investigation of other metal halides
as catalysts, MgCl2, LiCl, CuCl2, or AlCl3 failed in the
(8) De Kimpe, N.; Verhe´, R. The Chemistry of R-Haloketones,
R-Haloaldehydes and R-Haloimines; Patai, S., Rappoport, Z., Eds.; J ohn
Wiley & Sons: Chichester, 1988.
(9) For the Pd- or Ru-catalyzed coupling of R-bromo ketones
bearing bulky or aryl substituents with tin enolate, see: Kosugi, M.;
Takano, I.; Sakurai, M.; Sano, H.; Migita, T. Chem. Lett. 1984, 1221-
1224.
(10) The five-coordinate tin enolate is derived from the four-
coordinate tin enolate and an appropriate ligand. (a) Baba, A.; Yasuda,
M.; Yano, K.; Shibata, I.; Matsuda, H. J . Chem. Soc., Perkin Trans. 1
1990, 3205-3207. (b) Yasuda, M.; Oh-hata, T.; Shibata, I.; Baba, A.;
Matsuda, H. J . Chem. Soc., Perkin Trans. 1 1993, 859-865. (c) Yasuda,
M.; Katoh, Y.; Shibata, I.; Baba, A.; Matsuda, H.; Sonoda, N. J . Org.
Chem. 1994, 59, 4386-4392. (d) Yasuda, M.; Morimoto, J .; Shibata, I.;
Baba, A. Tetrahedron Lett. 1997, 38, 3265-3266.
(11) For reviews, see: (a) Shibata, I.; Baba, A. Org. Prep. Proc. Int.
1994, 26, 85-100. (b) Yasuda, M.; Shibata, I.; Baba, A.; Matsuda, H.
Recent Res. Dev. Pure Appl. Chem. 1997, 1, 55-71.
(12) R-Halo imines are often used instead of R-halo ketones. De
Kimpe, N.; De Cock, W.; Stevens, C. Tetrahedron 1992, 48, 2739-2760.
(13) Pri-Bar, I.; Pearlman, P. S.; Stille, J . K. J . Org. Chem. 1983,
48, 4629-4634.
(14) Kosugi, M.; Takano, I.; Hoshino, I.; Migita, T. J . Chem. Soc.,
Chem. Commun. 1983, 989-990.
(15) (a) Yasuda, M.; Oh-hata, T.; Shibata, I.; Baba, A.; Matsuda,
H.; Sonoda, N. Tetrahedron Lett. 1994, 35, 8627-8630. (b) Yasuda,
M.; Oh-hata, T.; Shibata, I.; Baba, A.; Matsuda, H.; Sonoda, N. Bull.
Chem. Soc. J pn. 1995, 68, 1180-1186.
S0022-3263(97)01624-1 CCC: $14.00 © 1997 American Chemical Society