JOURNAL OF CHEMICAL RESEARCH 2007 171
Table 1 Hydrohalogenation of alkynoic acids (esters) using different ionic liquid hydrohalogenating mixtures
Hydrohalogenating
mixture
X
R
CO2R'
Y
R
CO2R'
1a–k
2a–k
Compound
R
R’
X
Y
Hydrohalogenating
mixture (equiv)
Time/h
Temp/°C
Yield/%
Ref.*
2a
2b
2c
2d
2e
2f
2g
2h
2i
H
Et
Et
Et
Me
Et
Et
Et
Me
H
Br
Br
Br
Br
I
H
D
H
H
H
D
H
H
H
H
H
nBuPy+Br-/CF3CO2H (1)
nBuPy+Br-/CF3CO2D (1)
nBuPy+Br-/CF3CO2H (3)
nBuPy+Br-/CF3CO2H (1)
nBuPy+I-/CF3CO2H (1)
nBuPy+I-/CF3CO2D (1)
nBuPy+I-/CF3CO2H (3)
nBuPy+I-/CF3CO2H (1)
nBuPy+I-/CF3CO2H(1)
nHexPy+Cl-/CF3CO2H (2)
nBuPyr+I-/CF3CO2H(1.5)
4
4
12
4
8
8
12
6
6
70
70
80
60
25
25
80
60
60
60
60
77
61
74
85
68
65
97
82
76
85
80
12a
23
H
Ph
CO2Me
H
H
Ph
24
25
12c
–
12e
26
26
I
I
CO2Me
CO2H
H
I
I
2j
2k
Et
H
Cl
I
12
12
12a
27
CH3
aCompounds were isolated in pure isomeric form after work-up. Their physical and spectroscopical data were identical with those
reported in the references given.
2
(a) E.C. Stracker and G. Zweifel, Tetrahedron Lett., 1991, 32, 3329;
(b) A.O. King, N.J. Okukado and E. J. Negishi, J. Chem. Soc. Chem.
Commun., 1977, 683.
Procedure for the preparation of hydrohalogenating mixtures:
The N-alkylpyridinium salt22 (ionic liquid, 8 mmol) was gently
warmed until it melted and was then mixed thoroughly with
trifluoroacetic or deuterated trifluoroacetic acid (8 mmol).
The mixture was vigarously stirred until one phase was formed and
then cooled to room temperature.
Procedure for the hydrohalogenation of alkynoic acids and
their esters: The alkynoic acid or ester (1 mmol) was mixed with
the hydrohalogenating mixture and stirred at the indicated ratios,
temperatures and times (see Table 1). The reaction mixture was then
cooled to room temperature, extracted with diethyl ether (3 × 10 ml),
the extract passed through a silica-gel-charcoal column and the
solvent evaporated to give the corresponding compound (2a–k).
Spectroscopic and physical data corresponded to reported compounds
(see Table 1).
3
4
(a) M. Abarbri, J.L. Parrain, J.C. Cintrat and A. Duchêne, Synthesis, 1996,
82; (b) J.K. Stille and J.H. Simpson, J. Am. Chem. Soc., 1987, 109, 2138.
(a) V. Fiandanese, F. Babudri, G. Marchese and A. Punzi, Tetrahedron,
2002, 58, 9547; (b) P. Beckström, U. Jacobson and T. Norin, Tetrahedron,
1988, 44, 2541; (c) Y. Ikeda, J. Ukai, N. Ikeda and H. Yamamoto,
Tetrahedron, 1987, 43, 743; (d) F.D. Lewis, D.K. Howard, S.V. Barancyh
and J.D. Oxman, J. Am. Chem. Soc., 1986, 108, 3016; (e) B.M. Trost,
T.N. Nanninga and D.M.T. Chan, Organometallics, 1982, 1, 1543.
(a) V. Fiandanese, D. Bottalico and G. Marchese, Tetrahedron, 2001, 57,
10213; (b) I.E. Ronning and H.A. Frank, J. Food. Prot. 1988, 51, 651;
(c) P. Samuelson, Angew. Chem. Int. Ed. Engl. 1983, 22, 805.
J. Cosseau, Synthesis, 1980, 805.
(a) P. Kropp, K. Daus, M. Tubergen, K. Kepler, V. Wilson, S. Craig and
S. Crawford, J. Am. Chem. Soc., 1990, 112, 7433; (b) P. Kropp,
K. Daus, M. Tubergen, K. Kepler, V. Wilson, S. Craig, M. Bailargeon and
G. Breton, J. Am. Chem. Soc., 1993, 115, 3071.
M. Periasamy and Ch. Reddy, Tetrahedron Lett. 1990, 31, 1919.
P. Campos, B. García and M. Rodríguez, Tetrahedron Lett. 2002, 43,
6111.
5
6
7
Typical examples
8
9
Ethyl Z-3-bromopropenoate (2a): Colourless oil. Yield: 77%;
IR (cm-1): 1730; 1H NMR: d 6.93 (d, 1H, J = 8.4 Hz, CH), 6.55 (d, 1H,
J = 8.4 Hz, CH), 4.16 (q, 2H, J = 7.0 Hz, CH2), 1.24 (t, 3H, J = 7.0 Hz,
CH3); 13C NMR: d 163.9, 124.5, 122.0, 60.7, 14.1. MS: m/z 150 and
152 (1:1, [M–29]+).
10 Y. Ishii, N. Kamiya and Y. Chikami, Synlett, 1990, 675.
11 L. MacInnes, D. Schorstein and C. J. Suckling, Chem. Soc. Perkin Trans.
1, 1981, 1103.
Ethyl Z-3-iodo-2-deuteriopropenoate (2f): Colourless oil. Yield:
65%; IR (cm-1): 1735; 1H NMR: d 7.39 (s, 1H CH), 4.16 (q, 2H,
J = 7.3 Hz, CH2), 1.25 (t, 3H, J = 7.3 Hz, CH3); 13C NMR: d 164.5,
129.9 (t, 1C, J = 26.4 Hz, CD), 94.9, 60.8, 14.3 Anal. Calcd. for
C5H6DIO2: C 26.45%, H 3.10%; found: C 26.6%, H 3.2%.
12 (a) S. Ma and X. Lu, J. Chem. Soc. Chem. Commun., 1990, 1643;
(b) S. Ma and X. Lu, Tetrahedron Lett., 1990, 31, 7653; (c) S. Ma,
X Lu and Z. Li, J. Org. Chem., 1992, 57, 709; (d) S. Ma and X. Lu, Chin.
J. Chem., 1998, 16, 387; (e) E. Piers, T. Wong, P. Coish and C. Rogers, Can.
J. Chem., 1994, 72, 1816.
13 N. Urdaneta, J. Herrera, J. Salazar and S. López, Synth. Commun., 2002,
32, 3003.
The authors thank Decanato de Investigación
y Desarrollo
14 N. Urdaneta, J. Salazar, J. Herrera and S.E. Lopez, Synth. Commun., 2004,
34, 657.
(Universidad Simón Bolívar, Caracas) for its financial support, as well
as to the Laboratorio de Resonancia Magnética Nuclear (Laboratorio
B, Universidad Simón Bolívar, Caracas) for the spectroscopic
facilities. FF thanks Decanato de Estudios Profesionales (Universidad
Simón Bolívar, Caracas) for an undergraduate research financial
support. JR thanks FONACIT (Caracas, Venezuela) for a doctoral
fellowship.
15 For recent reviews see: (a) N. Jain, A. Kumar, S. Chauhan and
S.M.S. Chauhan, Tetrahedron, 2005, 61, 1015; (b) C. Baudequin,
J. Baudoux, J. Levillain, D. Cahard, A.C. Gaumont and J.C. Plaquevent,
Tetrahedron: Assymetry 2003, 14, 3081; (c) H. Zhao and S.V. Malhotra.
Aldrichimica Acta, 2002, 35, 75; (d) H. Olivier-Bourbigou and L. Magna,
J. Mol. Catal. A: Chem., 2002, 182; (e) M.J. Earle and K.R. Seddon,
Pure Appl. Chem., 2000, 72, 1391; (f) P. Wasserscheid and K. Wilhelm,
Angew. Chem. Int. Ed., 2000, 39, 3772; (g) T. Welton, Chem. Rev., 1999,
99, 2071.
Received 12 December 2006; accepted 27 March 2007
16 M. Freemantle, Chem. Eng. News, 2001, 79, 36.
Paper 06/4372
doi: 10.3184/030823407X200038
17 (a) I. Meracz and T. Oh, Tetrahedron Lett., 2003, 44, 6465; (b) J. Wu,
X. Wu, B. Beck and R.X. Ren, Tetrahedron Lett., 2002, 43, 387;
(c) J. Howarth, K. Hanlon, D. Fayne and P. McCormac, Tetrahedron Lett.,
1997, 3097; (d) J.A. Boon, J.A. Levisky, J.L. Pfluga and J.S. Wilkes,
J. Org. Chem., 1986, 51, 480; (e) J.K.D. Surette, L. Green and
R.D. Singer, Chem. Commun., 1996, 2753; (f) A.L. Monteiro, F.K. Zinn,
R.F. de Souza and J. Dupont, Tetrahedron: Assymetry, 1997, 8, 177.
18 C. Patrascu, C. Sugisaki, C. Mingotaud, J.D. Marty, Y. Génisson and
N. Lauth-de Viguerie, Heterocycles, 2004, 63, 2033; (b) F.H. Hurley
and T.P. Weir, J. Electrochem. Soc., 1951, 98, 203; (c) R.J. Gale
and R.A. Osteryoung, Inorg. Chem., 1980, 19, 2240; (d) S. Tait and
R.A. Osteryoung, Inorg. Chem., 1984, 23, 4352.
References
1
(a) D.L. Romero, P.R. Manninen, F. Han and A.G. Romero, J. Org. Chem.,
1999, 64, 4980; (b) A.B. Smith and S.N. Kilenyl, Tetrahedron Lett., 1985,
26, 4419; (c) R.C. Larock, K. Narayanan and S.S. Hernshberger, J. Org.
Chem., 1983, 48, 4377; (d) T. Yoshiyasa, I. Nobuyuki, A. Kazuo and
S. Minoru, Chem. Pharm. Bull., 1982, 30, 3167; (e) G. Ege and H. Franz,
J. Heterocyc. Chem., 1982, 19, 1267; (f) P. Bey and J.P. Vevert, J. Org.
Chem., 1980, 45, 3249; (g) W. Oppolzer and C. Robbiani, Helv. Chim.
Acta, 1980, 63, 2010; (h) N. Miyaura, N. Sasaki, M. Itoh and A. Suzuki,
Tetrahedron Lett., 1977, 3369.
19 J. Salazar and R. Dorta, Synlet, 2004, 1318.
PAPER: 06/4372