Journal of the American Chemical Society
Page 8 of 24
Chem., Int. Ed. 2017, 56, 14453–14457.
Trimetaphosphate: A Triphosphorylating Reagent for C, N, and
1
2
3
4
5
6
7
8
(23) Pham Minh, D.; Ramaroson, J.; Nzihou, A.; Sharrock, P. One-
Step Synthesis of Sodium Trimetaphosphate (Na3P3O9) from
Sodium Chloride and Orthophosphoric Acid. Ind. Eng. Chem.
Res. 2012, 51, 3851–3854.
(24) (a) Cella, J. A.; Carpenter, J. C. Procedures for the prepa-
ration of silanols. J. Organomet. Chem. 1994, 480, 23–26;
(b) Takiguchi, T. Preparation of Some Organosilanediols and
Phenylsilanetriol by Direct Hydrolysis Using Aniline as Hydro-
gen Chloride Acceptor. J. Am. Chem. Soc. 1959, 81, 2359–
2361; (c) Kondo, S.-i.; Harada, T.; Tanaka, R.; Unno, M. Anion
Recognition by a Silanediol-Based Receptor. Org. Lett. 2006,
8, 4621–4624.
(25) Besecker, C. J.; Day, V. W.; Klemperer, W. G. The trimetaphos-
phate ligand in organometallic chemistry. Isolation of tri-
carbonylmanganese(I), tricarbonylrhenium(I), (pentamethylcy-
clopentadienyl)rhodium(III), and (norbornadiene)rhodium(I)
adducts. Organometallics 1985, 4, 564–570.
(26) Ross, W. H.; Jones, R. M. The Solubility and Freezing-Point
Curves of Hydrated and Anyhdrous Orthophosphoric Acid. J.
Am. Chem. Soc. 1925, 47, 2165–2170.
O Nucleophiles. J. Am. Chem. Soc. 2019, 141, 1852–1856.
(46) (a) Styskalik, A.; Babiak, M.; Machac, P.; Relichova, B.;
Pinkas, J. New Adamantane-like Silicophosphate Cage and
Its Reactivity toward Tris(pentafluorophenyl)borane. Inorg.
Chem. 2017, 56, 10699–10705; (b) J¨ahnigen, S.; Brendler, E.;
Bo¨hme, U.; Kroke, E. Synthesis of silicophosphates contain-
ing SiO6-octahedra under ambient conditions reactions of an-
hydrous H3PO4 with alkoxysilanes. Chem. Commun. 2012,
48, 7675–7677; (c) Styskalik, A.; Skoda, D.; Moravec, Z.;
Babiak, M.; Barnes, C. E.; Pinkas, J. Control of mi-
cro/mesoporosity in non-hydrolytic hybrid silicophosphate xe-
rogels. J. Mater. Chem. A 2015, 3, 7477–7487.
(47) (a) Hesse, K.-F. Refinement of the crystal structure of silicon
diphosphate, SiP2O7 AIV - a phase with six-coordinated silicon.
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
1979, 35, 724–725; (b) Poojary, D. M.; Borade, R. B.; Camp-
bell, F. L.; Clearfield, A. Crystal Structure of Silicon Pyrophos-
phate (Form I) from Powder Diffraction Data. J. Solid State
Chem. 1994, 112, 106–112; (c) Poojary, D. M.; Borade, R. B.;
Clearfield, A. Structural characterization of silicon orthophos-
phate. Inorg. Chim. Acta 1993, 208, 23–29.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(27) Smith, J. P.; Brown, W. E.; Lehr, J. R. Structure of Crystalline
Phosphoric Acid. J. Am. Chem. Soc. 1955, 77, 2728–2730.
(28) B¨ohme, U.; Gerwig, M.; Gru¨ndler, F.; Brendler, E.; Kroke, E.
Unexpected Formation and Crystal Structure of the Highly
(48) Liebau, F.; Bissert, G.; K¨oppen, N. Synthese und kristallo-
graphische Eigenschaften einiger Phasen im System SiO2–P2O5.
Z. Anorg. Allg. Chem. 1968, 359, 113–134.
(49) H´erault, D.; Nguyen, D. H.; Nuel, D.; Buono, G. Reduction of
secondary and tertiary phosphine oxides to phosphines. Chem.
Soc. Rev. 2015, 44, 2508–2528.
Symmetric Carbanion [C(SiCl3)3]−
. Eur. J. Inorg. Chem.
2016, 2016, 5028–5035.
(29) Tillmann, J.; Meyer, L.; Schweizer, J. I.; Bolte, M.; Lerner, H.-
W.; Wagner, M.; Holthausen, M. C. Chloride-Induced Aufbau
of Perchlorinated Cyclohexasilanes from Si2Cl6: A Mechanistic
Scenario. Chem. - Eur. J. 2014, 20, 9234–9239.
(30) Choi, S.-B.; Kim, B.-K.; Boudjouk, P.; Grier, D. G. Amine-
Promoted Disproportionation and Redistribution of Trichlorosi-
lane: Formation of Tetradecachlorocyclohexasilane Dianion. J.
Am. Chem. Soc. 2001, 123, 8117–8118.
(31) (a) Benkeser, R. A. Chemistry of trichlorosilane-tertiary amine
combinations. Acc. Chem. Res. 1971, 4, 94–100; (b) Kang, S.-
H.; Han, J. S.; Lee, M. E.; Yoo, B. R.; Jung, I. N. Phosphonium
Chloride Induced Dichlorosilylene Transfer from Trichlorosi-
lane. Organometallics 2003, 22, 2551–2553; (c) Kang, S.-H.;
Han, J. S.; Yoo, B. R.; Lee, M. E.; Jung, I. N. Phosphonium
Chloride-Catalyzed Dehydrochlorinative Coupling Reactions
of Alkyl Halides with Hydridochlorosilanes. Organometallics
2003, 22, 529–534.
(32) Greulich, T. W.; Suzuki, N.; Daniliuc, C. G.; Fukazawa, A.;
Yamaguchi, E.; Studer, A.; Yamaguchi, S. A biphenyl contain-
ing two electron-donating and two electron-accepting moieties:
a rigid and small donor-acceptor-donor ladder system. Chem.
Commun. 2016, 52, 2374–2377.
(33) Li, Y.; Chakrabarty, S.; Mu¨ck-Lichtenfeld, C.; Studer, A. Ortho-
Trialkylstannyl Arylphosphanes by C–P and C–Sn Bond Forma-
tion in Arynes. Angew. Chem., Int. Ed. 2016, 55, 802–806.
(34) Mackewitz, T.; Ahlers, W.; Zeller, E.; Roper, M.; Paciello, R.;
Papp, R.; Knoll, K.; Voss, H.; Roeper, M. Phosphacyclohex-
anes and the use thereof in the hydroformylation of olefins.
2004; CIB: B01J31/24; C07C45/50; C07F15/00; C07F15/04;
C07F15/06; C07F9/6568; B01J31/28; (IPC1-7): B01J31/00.
(35) Buckler, S.; Epstein, M. The preparation and reactions of pri-
mary phosphine oxides. Tetrahedron 1962, 18, 1221–1230.
(36) Cozzoli, P. D.; Kornowski, A.; Weller, H. Low-Temperature Syn-
thesis of Soluble and Processable Organic-Capped Anatase TiO2
Nanorods. J. Am. Chem. Soc. 2003, 125, 14539–14548.
(37) Langley, S.; Helliwell, M.; Sessoli, R.; Teat, S. J.; Winpenny, R.
E. P. Synthesis and Structural and Magnetic Characterization of
Cobalt(II) Phosphonate Cage Compounds. Inorg. Chem. 2008,
47, 497–507.
(50) (a) Benkeser, R. A.; Voley, K. M.; Grutzner, J. B.; Smith, W. E.
Evidence for the existence of the trichlorosilyl anion. J. Am.
Chem. Soc. 1970, 92, 697–698; (b) Oehme, H.; Weiss, H. Reac-
tion of 2,4,6-tri-t-butylphenyllithium with bromotrichlorosilane.
Generation of trichlorosilyllithium, LiSiCl3. J. Organomet.
Chem. 1987, 319, C16–C18; (c) Teichmann, J.; Bursch, M.;
K¨ostler, B.; Bolte, M.; Lerner, H.-W.; Grimme, S.; Wagner, M.
Trapping Experiments on a Trichlorosilanide Anion: a Key In-
termediate of Halogenosilane Chemistry. Inorg. Chem. 2017,
56, 8683–8688; (d) Teichmann, J.; Wagner, M. Silicon chemistry
in zero to three dimensions: from dichlorosilylene to silafuller-
ane. Chem. Commun. 2018, 54, 1397–1412.
(51) (a) Krenske, E. H. Theoretical Investigation of the Mechanisms
and Stereoselectivities of Reductions of Acyclic Phosphine Ox-
ides and Sulfides by Chlorosilanes. J. Org. Chem. 2012, 77,
3969–3977; (b) Krenske, E. H. Reductions of Phosphine Oxides
and Sulfides by Perchlorosilanes: Evidence for the Involvement
of Donor-Stabilized Dichlorosilylene. J. Org. Chem. 2012, 77,
1–4; (c) Naumann, K.; Zon, G.; Mislow, K. Use of hexachlorodis-
ilane as a reducing agent. Stereospecific deoxygenation of acyclic
phosphine oxides. J. Am. Chem. Soc. 1969, 91, 7012–7023.
(52) Huang, X.; Ding, W.-J.; Yan, J.-M.; Xiao, W.-D. Reactive Dis-
tillation Column for Disproportionation of Trichlorosilane to
Silane: Reducing Refrigeration Load with Intermediate Con-
densers. Ind. Eng. Chem. Res. 2013, 52, 6211–6220.
(53) Neumeyer, F.; Schweizer, J. I.; Meyer, L.; Sturm, A. G.;
Nadj, A.; Holthausen, M. C.; Auner, N. Thermal Synthesis of
Perchlorinated Oligosilanes: A Fresh Look at an Old Reaction.
Chem. - Eur. J. 2017, 23, 12399–12405.
(54) Although we were unable to find a literature report associated
with this compound, it can be accessed in the Cambridge Struc-
tural Database as a private communication under the refcode
CCDC 183389.
(55) Teichmann, J.; Kunkel, C.; Georg, I.; Moxter, M.; San-
towski, T.; Bolte, M.; Lerner, H.-W.; Bade, S.; Wagner, M.
Tris(trichlorosilyl)tetrelide Anions and a Comparative Study of
Their Donor Qualities. Chem. - Eur. J. 2019, 25, 2740–2744.
(56) Georg, I.; Teichmann, J.; Bursch, M.; Tillmann, J.; Ende-
ward, B.; Bolte, M.; Lerner, H.-W.; Grimme, S.; Wagner, M.
Exhaustively Trichlorosilylated C1 and C2 Building Blocks: Be-
yond the Mu¨llerRochow Direct Process. J. Am. Chem. Soc.
2018, 140, 9696–9708.
(57) Mu¨ller, U.; Krug, V. Darstellung und Schwingungsspektren
von Thiotrichlorosilicat und -germanat. Die Kristallstruk-
tur von NEt4[SiSCl3]·0,5CCl4/ Preparation and Synthesis of
Thiotrichloro Silicate and Germanate. Crystal Structure of
NEt4[SiSCl3]·0.5CCl4. Z. Naturforsch., B: J. Chem. Sci.
1985, 40, 1015–1019.
(38) Lavaud, C.; Goettmann, F.; Causse, J.; Grandjean, A. Procede
sol-gel pour separer des ions metalliques d’une solution aqueuse.
2014; FR3001961A1.
(39) Svara, J.; Weferling, N.; Hofmann, T. “Phosphorus Com-
pounds, Organic” in Ullmann’s Encyclopedia of Industrial
Chemistry; WileyVCH: Weinheim, Germany, 2006.
(40) Julia, M.; Mestdagh, H.; Rolando, C. Une methode simple de
synthese des phosphates terpeniques allyliques primaires et ter-
tiaires. Tetrahedron 1986, 42, 3841–3849.
(41) Verstuyft, A. W.; Redfield, D. A.; Cary, L. W.; Nelson, J. H.
Palladium(II) complexes of benzylphosphorus ligands. Inorg.
Chem. 1977, 16, 2776–2786.
(58) Greenwood, N. N.; Earnshaw, A. Chemistry of the elements,
2nd ed.; Butterworth-Heinemann,: Boston, Mass., 1997.
(59) Rettig, S. J.; Trotter, J. Refinement of the structure of or-
thorhombic sulfur, α-S8. Acta Crystallogr., Sect. C: Cryst.
Struct. Commun. 1987, 43, 2260–2262.
(60) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence,
triple zeta valence and quadruple zeta valence quality for H to
Rn: Design and assessment of accuracy. Phys. Chem. Chem.
Phys. 2005, 7, 3297.
(61) Chai, J.-D.; Head-Gordon, M. Systematic optimization of long-
range corrected hybrid density functionals. J. Chem. Phys.
2008, 128, 084106.
(62) Pyykk¨o, P.; Atsumi, M. Molecular Single-Bond Covalent Radii
for Elements 1–118. Chem. - Eur. J. 2009, 15, 186–197.
(63) Panckhurst, D. J.; Wilkins, C. J.; Brault, A. T.; Angelici, R. J.
In “Trichlorosilanethiol” in Inorg. Synth.; Kleinberg, J., Ed.;
John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1963; Vol. 7; pp
28–30.
(42) McKenna, E. G.; Walker, B. J. The stereochemistry of Wittig
reactions of ylide-anions derived from semi-stabilized phospho-
nium ylides. Tetrahedron Lett. 1988, 29, 485–488.
(43) Manna, C. M.; Nassar, M. Y.; Tofan, D.; Chakarawet, K.; Cum-
mins, C. C. Facile synthesis of mononuclear early transition-
metal complexes of κ3 cyclo-tetrametaphosphate ([P4O12
]
)
4−
and cyclo-trimetaphosphate ([P3O9]3−). Dalton Trans. 2014,
43, 1509–1518.
(44) Jiang, Y.; Chakarawet, K.; Kohout, A. L.; Nava, M.;
Marino, N.; Cummins, C. C. Dihydrogen Tetrametaphosphate,
[P4O12H2]2−
:
Synthesis, Solubilization in Organic Media,
2−
Preparation of its Anhydride [P4O11
]
and Acidic Methyl Es-
ter, and Conversion to Tetrametaphosphate Metal Complexes
via Protonolysis. J. Am. Chem. Soc. 2014, 136, 11894–11897.
(45) Shepard, S. M.; Cummins, C. C. Functionalization of Intact
ACS Paragon Plus Environment
8