10.1002/anie.201810366
Angewandte Chemie International Edition
COMMUNICATION
dissociation enthalpies indicate that the P–B bond in PBaz3 (90
kcal mol-1) is stronger than the P–C bond in PPh3 (81 kcal mol-1)
and therefore the unconventional oxidation chemistry of PBaz3 is
driven by the high B–O bond strength.
Chem. Vol. 49 (Eds.: E. Fernández, A. Whiting), Springer
International Publishing, 2015, pp. 153–220.
A. Rossin, M. Peruzzini, Chem. Rev. 2016, 116, 8848–8872.
Z. Mo, A. Rit, J. Campos, E. L. Kolychev, S. Aldridge, J. Am. Chem.
Soc. 2016, 138, 3306–3309.
[17]
[18]
The chemistry of borazine has intrigued chemists for over 90
years. The synthesis of triborazinylphosphine (PBaz3), an
inorganic analogue of triphenylphosphine (PPh3), is notable
because it is the most elaborate molecular borazine so far
reported and the first borazine to contain a B–P bond. The
structures and Lewis basicity of PBaz3 and PPh3 are similar but
their oxygenation and hydrolysis chemistry could hardly be more
different. For example, PBaz3 catches fire in air (presumably due
to the formation of PH3) while PPh3 is indefinitely air-stable even
in solution. Controlled oxidation transforms PBaz3 into "inorganic
triphenyl phosphite", P(OBaz)3 by three O insertions into the P–
B bonds while PPh3 produces simply triphenylphosphine oxide.
These striking differences in chemistry are thermodynamically
driven by the very high B–O bond strength. The extreme
sensitivity of PBaz3 to air and moisture producing PH3, precludes
many applications for PBaz3 in catalysis but its synthesis opens
up the possibility of developing more stable ligands containing a
single borazinyl substituent and the prospect of producing
unchartered borazines that contain B bonded to other 2nd row
elements such as Si and S.
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
W. Shen, M. Li, Y. Li, S. Wang, Inorganica Chim. Acta 2007, 360,
619–624.
A. K. Phukan, A. K. Guha, B. Silvi, Dalt. Trans. 2010, 39, 4126–
4137.
D. Wu, L. Kong, Y. Li, R. Ganguly, R. Kinjo, Nat. Commun. 2015,
6:7340, DOI 10.1038/ncomms8340.
H. Braunschweig, A. Damme, R. D. Dewhurst, A. Vargas, Nat.
Chem. 2013, 5, 115–121.
R. Islas, E. Chamorro, J. Robles, T. Heine, J. C. Santos, G. Merino,
Struct. Chem. 2007, 18, 833–839.
D. E. Bean, P. W. Fowler, J. Phys. Chem. A 2011, 115, 13649–
13656.
B. Kiran, A. K. Phukan, E. D. Jemmis, Inorg. Chem. 2001, 40,
3615–3618.
A. W. Laubengayer, O. T. Beachley, R. F. Porter, Inorg. Chem.
1965, 4, 578–582.
M. K. Kesharwani, M. Suresh, A. Das, B. Ganguly, Tetrahedron Lett.
2011, 52, 3636–3639.
C. A. Brown, A. W. Laubengayer, J. Am. Chem. Soc. 1955, 77,
3699–3700.
Keywords: Main Group Elements • Phosphorus • Boron •
Inorganic Chemistry • Structure Elucidation
C. K. Narula, R. Schaeffer, A. Datye, R. T. Paine, Inorg. Chem.
1989, 28, 4053–4055.
[1]
[2]
A. Stock, E. Pohland, Ber. Dtsch. Chem. Ges. 1926, 59, 2215–2223.
M. J. D. Bosdet, C. A. Jaska, W. E. Piers, T. S. Sorensen, M.
Parvez, Org. Lett. 2007, 9, 1395–1398.
[30]
[31]
E. Framery, M. Vaultier, Heteroat. Chem. 2000, 11, 218–225.
Y. Yamamoto, K. Miyamoto, J. Umeda, Y. Nakatani, T. Yamamoto,
N. Miyura, J. Organomet. Chem. 2006, 691, 4909–4917.
H. Braunschweig, H. Green, K. Radacki, K. Uttinger, Dalt. Trans.
2008, 3531–3534.
[3]
[4]
A. J. V Marwitz, A. N. Lamm, L. N. Zakharov, M. Vasiliu, D. A. Dixon,
S. Liu, Chem. Sci. 2012, 3, 825–829.
[32]
[33]
X. Y. Wang, A. Narita, X. Feng, K. Müllen, J. Am. Chem. Soc. 2015,
137, 7668–7671.
D. Bonifazi, F. Fasano, M. M. Lorenzo-Garcia, D. Marinelli, H.
Oubaha, J. Tasseroul, Chem. Commun. 2015, 51, 15222–15236.
O. T. Beachely, Inorg. Chem. 1969, 8, 2665–2667.
O. T. Beachely, Inorg. Chem. 1969, 8, 981–985.
O. T. Beachley, T. R. Durkin, Inorg. Chem. 1973, 12, 1128–1130.
G. H. Lee, R. F. Porter, Inorg. Chem. 1967, 6, 648–652.
J. A. Bailey, P. G. Pringle, Coord. Chem. Rev. 2015, 297–298, 77–
90.
[5]
[6]
[7]
X. Y. Wang, J. Y. Wang, J. Pei, Chem. Eur. J. 2015, 21, 3528–3539.
H. Huang, Z. Pan, C. Cui, Chem. Commun. 2016, 52, 4227–4230.
Z. Liu, J. S. A. Ishibashi, C. Darrigan, A. Dargelos, A. Chrostowska,
B. Li, M. Vasiliu, D. A. Dixon, S. Y. Liu, J. Am. Chem. Soc. 2017,
139, 6082–6085.
[34]
[35]
[36]
[37]
[38]
[8]
C. Baldock, J. B. Rafferty, S. E. Sedelnikova, P. J. Baker, A. R.
Stuitje, A. R. Slabas, T. R. Hawkes, D. W. Rice, Science 1996, 274,
2107–2110.
[39]
[40]
G. Wittig, U. Schollkopf, Chem. Ber. 1954, 87, 1318–1330.
D. Evans, J. A. Osborn, G. Wilkinson, J. Chem. Soc. A Inorg. Phys.
Theor. 1968, 3133–3142.
[9]
L. Liu, A. J. V Marwitz, B. W. Matthews, S.-Y. Liu, Angew. Chem. Int.
Ed. 2009, 48, 6817–6819.
[41]
[42]
J. A. Bailey, M. Ploeger, P. G. Pringle, Inorg. Chem. 2014, 53,
7763–7769.
[10]
[11]
[12]
[13]
[14]
[15]
D. H. Knack, J. L. Marshall, G. P. Harlow, A. Dudzik, M. Szaleniec,
S. Liu, J. Heider, Angew. Chem. Int. Ed. 2013, 52, 2599–2601.
F. J. R. Rombouts, F. Tovar, N. Austin, G. Tresadern, A. A.
Trabanco, J. Med. Chem. 2015, 58, 9287–9295.
H. Lee, M. Fischer, B. K. Shoichet, S. Y. Liu, J. Am. Chem. Soc.
2016, 138, 12021–12024.
B. Ziemer, A. Rabis, H. U. Steinberger, Acta Crystallogr. Sect. C
2000, C56, e58–e59.
[43]
[44]
H. A. Bent, Chem. Rev. 1961, 61, 275–311.
T. E. Müller, D. M. P. Mingos, Transit. Met. Chem. 1995, 20, 533–
539.
P. Zhao, D. O. Nettleton, R. G. Karki, F. J. Zécri, S. Y. Liu,
ChemMedChem 2017, 12, 358–361.
[45]
[46]
[47]
E. N. Daley, C. M. Vogels, S. J. Geier, A. Decken, S. Doherty, S. A.
Westcott, Angew. Chem., Int. Ed. 2015, 54, 2121–2125.
M. L. Schirmer, S. Jopp, J. Holz, A. Spannenberg, T. Werner, Adv.
Synth. Catal. 2016, 358, 26–29.
A. Staubitz, A. P. M. Robertson, I. Manners, Chem. Rev. 2010, 110,
4079–4124.
G. Chen, L. N. Zakharov, M. Bowden, A. Karkamkar, S. M.
Whittemore, E. B. Garner, T. C. Mikulas, D. A. Dixon, T. Autrey, S.-
Y. Liu, J. Am. Chem. Soc. 2015, 137, 134–137.
J. A. Bailey, H. A. Sparkes, P. G. Pringle, Chem. Eur. J. 2015, 21,
5360–5363.
[16]
H. C. Johnson, T. N. Hooper, A. S. Weller, in Top. Organomet.
This article is protected by copyright. All rights reserved.