Journal of the Iranian Chemical Society
15. M. Gilanizadeh, B. Zeynizadeh, J. Iran. Chem. Soc. 15, 2821
(2018)
ultrasonic bath for 30 min. Afterward, an aqueous solution
of NaBH4 (0.11 g in 30 mL H2O) within 1 min and under N2
atmosphere was added. Due to this, magnetically nanopar-
ticles of the immobilized copper species on NiFe2O4 were
prepared. The nanoparticles were separated by magnetic
decantation and washed several times with deionized water.
Drying under air atmosphere afords NiFe2O4@Cu MNPs.
16. B. Zeynizadeh, Z. Shokri, M. Hasanpour Galehban, Appl. Orga-
nometal. Chem. 33, e4771 (2019)
17. D. Astruc, Nanoparticles and Catalysis, Chapter 1 (Wiley-VCH,
Weinheim, 2008)
18. M. Larramendy, S. Soloneski, Green Nanotechnology: Overview
and Further Prospects (IntechOpen, London, 2016)
19. D. Wang, D. Astruc, Chem. Soc. Rev. 46, 816 (2017)
20. X. Liu, X. Wen, R. Hofmann, ACS Catal. 8, 3365 (2018)
21. N.K. Ojha, G.V. Zyryanov, A. Majee, V.N. Charushin, O.N. Chu-
pakhin, S. Santra, Coordin. Chem. Rev. 353, 1 (2017)
22. M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang,
R. Silva, X. Zou, R. Zboril, R.S. Varma, Chem. Rev. 116, 3722
(2016)
A general procedure for reductive acetylation
of nitroarenes
In a round-bottom fask (25 mL), a solution of nitrobenzene
(0.123 g, 1 mmol) in H2O–EtOH (1.5:0.5 mL) was prepared.
Magnetically, nanoparticles of NiFe2O4@Cu (0.15 g) were
added, and the resulting mixture was stirred for 5 min. After-
ward, NaBH4 (0.094 g, 2.5 mmol) was added and the result-
ing mixture was continued to stirring for 1 min at 70 °C.
After reduction of nitrobenzene to aniline (monitored by
TLC), Ac2O (0.204 g, 2 mmol) was added and the resulting
mixture was stirred for 1 min at 70 °C. The nanocatalyst
was separated by an external magnet, and the mixture was
extracted with EtOAc (3 × 5 mL). The organic layer was
dried over anhydrous Na2SO4. Evaporation of the solvent
afords the pure acetanilide in 95% yield (0.128 g, Table 3,
entry 1).
23. B. Zeynizadeh, M. Zabihzadeh, Z. Shokri, J. Iran. Chem. Soc. 13,
1487 (2016)
24. A. Alexakis, N. Krause, S. Woodward, Copper-Catalyzed Asym-
metric Synthesis (Wiley-VCH, Weinheim, 2014)
25. F. Alonso, Y. Moglie, G. Radivoy, M. Yus, Org. Biomol. Chem.
9, 6385 (2011)
26. J.M. Welter, Copper: Better Properties for Innovative Products
(Wiley-VCH, Weinheim, 2007)
27. R.L. Kimber, E.A. Lewis, F. Parmeggiani, K. Smith, H. Bagshaw,
T. Starborg, N. Joshi, A.I. Figueroa, G. van der Laan, G. Cibin,
D. Gianolio, S.J. Haigh, R.A.D. Pattrick, N.J. Turner, J.R. Lloyd,
Small 14, 1703145 (2018)
28. S. Jain, N. Nagar, V. Devra, Adv. Appl. Sci. Res. 6, 171 (2015)
29. J. Dupont, J.D. Scholten, Chem. Soc. Rev. 39, 1780 (2010)
30. F. Maillard, S. Schreier, M. Hanzlik, E.R. Savinova, S. Weinkauf,
U. Stimming, Phys. Chem. Chem. Phys. 7, 385 (2005)
31. M.M. Khakzad Siuki, M. Bakavoli, H. Eshghi, Appl. Organomet.
Chem. 33, e4774 (2019)
Acknowledgements The authors gratefully appreciated the fnancial
support of this work by the research council of Urmia University. The
helpful comments of Dr. Seyed Ali Hosseini and Dr. Ali Hassanzadeh
were also acknowledged.
32. B. Zeynizadeha, S. Rahmani, RSC Adv. 9, 8002 (2019)
33. A.R. Sardarian, F. Mohammadi, M. Esmaeilpour, Res. Chem.
Intermed. 45, 1437 (2019)
34. T. Pasinszki, M. Krebsz, G.G. Lajgut, T. Kocsis, L. Kótai, S. Kau-
thale, S. Tekalec, R. Pawar, New J. Chem. 42, 1092 (2018)
35. M. Ghavidel, S.Y.S. Beheshtiha, M.M. Heravi, Int. J. Nano
Dimens. 9, 408 (2018)
References
36. F. Taghavi, M. Gholizadeh, A.S. Saljooghia, M. Ramezani, Med.
Chem. Commun. 8, 1953 (2017)
1. P. Rajput, A. Sharma, J. Pharmacol. Med. Chem. 2, 22 (2018)
2. A. Ojeda-Porras, D. Gamba-Sánchez, J. Org. Chem. 81, 11548
(2016)
37. M. Tang, S. Zhang, X. Li, X. Pang, H. Qiu, Mater. Chem. Phys.
148, 639 (2014)
38. N. Kalarikkal, S. Thomas, O. Koshy, Nanomaterials: Physical,
Chemical, and Biological Applications, Chapter 14, 1st edn.
(Apple Academic Press, New York, 2018)
3. C.G. Wermuth, P. Ciapetti, B. Giethlen, P. Bazzini, in Compre-
hensive Medicinal Chemistry II, vol. 2, ed. by J.B. Taylor, D.J.
Triggle (Elsevier, Amsterdam, 2007), pp. 649–711
4. A.E. Wahba, J. Peng, M.T. Hamann, Tetrahedron Lett. 50, 3901
(2009)
39. T. Tatarchuk, M. Bououdina, J.J. Vijaya, L.J. Kennedy, Spinel
ferrite nanoparticles: synthesis, crystal structure, properties, and
perspective applications, in NANO 2016: Nanophysics, Nanoma-
terials, Interface Studies, and Applications, vol. 195, Springer
Proceedings in Physics, ed. by O. Fesenko, L. Yatsenko (Springer,
Berlin, 2017), pp. 305–325
5. J. Yue-shun, L. Qing, W. Xiao-Hong, W. Hai-Long, L. Xiao-Too,
J. Shanghai Univ. (Eng.) 10, 277 (2006)
6. D.C. Owsley, J.J. Bloomfeld, Synthesis 1977, 118 (1977)
7. K.Y. Lee, J.M. Kim, J.N. Kim, Bull. Korean Chem. Soc. 23, 1359
(2002)
40. N. Sanpo, C. Wen, C.C. Berndt, J. Wang, Antibacterial properties
of spinel ferrite nanoparticles, in Microbial Pathogens and Strate-
gies for Combating Them: Science, Technology and Education,
vol. 1, ed. by A. Méndez-Vilas (Formatex Research Center, Tor-
remolinos, 2013), pp. 239–250
8. T. Ho, J. Org. Chem. 42, 3755 (1977)
9. R.N. Baruah, Indian J. Chem. 39B, 300 (2000)
10. Y. Watanabe, Y. Tsuji, T. Kondo, R. Takeuchi, J. Org. Chem. 49,
4451 (1984)
41. D.S. Mathew, R.S. Juang, Chem. Eng. J. 129, 51 (2007)
42. B. Gillot, Eur. Phys. J. Appl. Phys. 4, 243 (1998)
43. P. Jing, J. Du, J. Wang, W. Lan, L. Pan, J. Li, J. Wei, D. Cao, X.
Zhang, C. Zhao, Q. Liu, Nanoscale 7, 14738 (2015)
44. A.S.A. Bakr, Y.M. Moustafa, E.A. Motawea, M.M. Yehia, M.M.H.
Khalil, J. Environ. Chem. Eng. 3, 1486 (2015)
11. E.M. Nahmed, G. Jenner, Tetrahedron Lett. 32, 4917 (1991)
12. K. Basu, S. Chakraborty, C. Saha, A.K. Sarkar, IOSR J. Appl.
Chem. 7, 30 (2014)
13. M.L. Kantam, R.S. Reddy, K. Srinivas, R. Chakravarti, B. Sreedhar,
F. Figueras, C.V. Reddy, J. Mol. Catal. A: Chem. 355, 96 (2012)
14. Z. Shokri, B. Zeynizadeh, S.A. Hosseini, J. Colloid Interface Sci.
485, 99 (2017)
45. A. Ren, C. Liu, Y. Hong, W. Shi, S. Lin, P. Li, Chem. Eng. J. 258,
301 (2014)
1 3