Inorganic Chemistry
Article
(16) Lam, O. P.; Anthon, C.; Meyer, K. Dalton Trans. 2009, 9677−
9691 and references therein.
(17) Vogel, C.; Heinemann, F. W.; Sutter, J.; Anthon, C.; Meyer, K.
Lancaster, K. M.; DeBeer, S.; Bill, E.; Meyer, K. J. Am. Chem. Soc.
2012, 134, 15538−15544.
(29) For comparison of Fe−Ccarb bond lengths, see, for example:
(a) Louie, J.; Grubbs, R. J. Chem. Commun. 2000, 1479−1480.
(b) Danopoulos, A. A.; Tsoureas, N.; Wright, J. A.; Light, M. E.
Organometallics 2004, 23, 166−168. (c) Vogel, C.; Heinemann, F. W.;
Sutter, J.; Anthon, C.; Meyer, K. Angew. Chem., Int. Ed. 2008, 47,
2681−2684. (d) Scepaniak, J. J.; Fulton, M. D.; Bontchev, R. P.;
Duesler, E. N.; Kirk, M. L.; Smith, J. M J. Am. Chem. Soc. 2008, 130,
10515−10517. (e) Danopoulos, A. A.; Pugh, D.; Smith, H.;
Saßmannshausen, J. Chem.Eur. J. 2009, 15, 5491−5502. (f) Scepa-
niak, J. J.; Margarit, C. G.; Harvey, J. N.; Smith, J. M. Inorg. Chem.
2011, 50, 9508−9517. (g) Scepaniak, J. J.; Harris, T. D.; Vogel, C. S.;
Sutter, J.; Meyer, K.; Smith, J. M. J. Am. Chem. Soc. 2011, 133, 3824−
3827. (h) Xiang, L.; Xiao, J.; Deng, K. Organometallics 2011, 30,
2018−2025. (i) Zlatogorsky, S.; Muryn, C. A.; Tuna, F.; Evans, D. J.;
Ingleson, M. J. Organometallics 2011, 30, 4974−4982. (j) Meyer, S.;
Orben, C. M.; Demeshko, S.; Dechert, S.; Meyer, F. Organometallics
2011, 30, 6692−6702. (k) Day, B. M.; Pugh, T.; Hendriks, D.; Guerra,
C. F.; Evans, D. J.; Bickelhaupt, F. M.; Layfield, R. A. J. Am. Chem. Soc.
2013, 135, 13338−13341.
Angew. Chem., Int. Ed. 2008, 47, 2681−2684.
(18) Kropp, H.; King, A. E.; Khusniyarov, M. M.; Heinemann, F. W.;
Lancaster, K. M.; DeBeer, S.; Bill, E.; Meyer, K. J. Am. Chem. Soc.
2012, 134, 15538−15544.
(19) Hu, X.; Castro-Rodriguez, I.; Meyer, K. J. Am. Chem. Soc. 2004,
126, 13464−13473.
(20) Hu, X.; Meyer, K. J. Am. Chem. Soc. 2004, 126, 16322−16323.
(21) Vogel, C. S. High- and Low-Valent tris-N-Heterocyclic Carbene
Iron Complexes: A Study of Molecular and Electronic Structure; Springer:
Heidelberg, 2012.
(22) Vogel, C. S.; Heinemann, F. W.; Khusniyarov, M. M.; Meyer, K.
Inorg. Chim. Acta 2010, 364, 226−237.
(23) Such as bidentate NHC/phenolates, (see, for example, refs 23a
and 23b), vaulted, 4-coordinate bis(NHC-phenolates) (ref 23c), or
pincer-type ligands with an OCO binding motif (O = phenolate, C =
NHC) (refs 23d−23g): (a) Liddle, S. T.; Edworthy, I. S.; Arnold, P. L.
Chem. Soc. Rev. 2007, 36, 1732. (b) Kong, Y.; Xu, S.; Song, H.; Wang,
B. Organometallics 2012, 31, 5527−5532. (c) Komiya, N.; Yoshida, A.;
Naota, T. Inorg. Chem. Commun. 2013, 27, 122−126. (d) Aihara, H.;
Matsuo, T.; Kawaguchi, H. Chem. Commun. 2003, 2204. (e) Zhang,
D.; Aihara, H.; Watanabe, T.; Matsuo, T.; Kawaguchi, H. J. Organomet.
Chem. 2007, 692, 234−242. (f) Bellemin-Laponnaz, S.; Welter, R.;
Brelot, L.; Dagorne, S. J. Organomet. Chem. 2009, 694, 604−606.
(g) Arnold, P. L.; Wilson, C. Inorg. Chim. Acta 2007, 360, 190−196.
(24) Despagnet-Ayoub, E.; Miqueu, K.; Sotiropoulos, J.-M.; Henling,
L. M.; Day, M. W.; Labinger, J. A.; Bercaw, J. E. Chem. Sci. 2013, 4,
2117−2121.
(30) The molecular structures of 5-Cl and 5-PF6 are very similar;
therefore, only one structure is discussed here and the other is given in
the Supporting Information.
(31) Details for the synthesis, crystallography, and spectroscopy of
this complex will be reported elsewhere.
(32) Because of the additional axial ligands, the other
−
(BIMPNMes,Ad,Me
comparable.
)
complexes’ molecular structures are not directly
(33) Kaim, W. Eur. J. Inorg. Chem. 2012, 343−348.
(34) Shimazaki, Y.; Yamauchi, O. Indian J. Chem. 2010, 50A, 383−
(25) Gademann, K.; Chavez, D. E.; Jacobsen, E. N. Angew. Chem., Int.
Ed. 2002, 41, 3059−3061.
(26) Flassbeck, C.; Wieghardt, K. Z. Anorg. Allg. Chem. 1992, 608,
60−68.
394.
(35) Ray, K.; Petrenko, T.; Wieghardt, K.; Neese, F. Dalton Trans.
2007, 1552−1566.
(36) For comparison of bond lengths in coordinated phenolates and
phenoxyl racials, see, for example: (a) Bill, E.; Bothe, E.; Chaudhuri,
P.; Chlopek, K.; Herebian, D.; Kokatam, S.; Ray, K.; Weyhermuller, T.;
Neese, F.; Wieghardt, K. Chemistry 2004, 11, 204−224. (b) Soko-
(27) For the coordinated azide ligand, a total of three absorption
bands are expected in the IR vibrational spectrum, originating from the
symmetric νs(N3) and the asymmetric νas(N3) stretching vibrations at
around 1300 and 2000 cm−1, respectively. The third absorption is
assigned to the deformation vibration ν(N3) at approximately 400
cm−1. Thus, strictly speaking, for a mono-azide metal complex, only
one νas(N3) absorption band is expected in the 2000 cm−1 region. We
note, however, that the azide complexes of the bis(carbene)
mono(phenolate) ligand in complexes 2, 4, and 6 crystallize with
two independent molecules per unit cell and that the chelate allows for
a variety of M−N3 conformations. This likely results in a number of
different νas(N3) vibration frequencies and absorption bands. In
addition, because of interactions with the “matrix”, such as KBr in the
solid state or a solvent molecule in solution, the number of absorption
bands can vary. In a simple, classic case of a coordinated azide, e.g.,
TlN3, Dehnicke reports ( Dehnicke, K. Z. Anorg. Allg. Chem. 1974,
409, 311 ) two absorption bands centered at 2037 and 2000 cm−1 for
νas(N3) and two bands at 1328 and 1319 cm−1 for the νs(N3)
vibration. We note that the solution IR spectrum of 6 also shows two
vibrational bands at 2081 and 2041 cm−1 (see the Supporting
Information, Figure S34).
lowski, A.; Bothe, E.; Bill, E.; Weyhermuller, T.; Wieghardt, K. Chem.
̈
Commun. 1996, 1671−1672.
(37) Gutlich, P.; Bill, E.; Trautwein, A. X. Mossbauer Spectroscopy and
Transition Metal Chemistry; Springer: Heidelberg, 2011.
̈
̈
(38) Greenwood, N. N.; Gibb, T. C. Mossbauer Spectroscopy;
̈
Chapman and Hall: London, 1971.
(39) The synthesis and characterization by Dr. Carola Vogel; see the
Supporting Information.
(40) Hu, X.; Castro-Rodriguez, I.; Olsen, K.; Meyer, K. Organo-
metallics 2004, 23, 755−764.
(41) See the Supporting Information for the synthesis and
characterization of the (tBu,tBuArO)3N3− complex of Co and its two
crystal structures.
(42) Only simulations with nonzero E result in reasonable g-values.
To determine parameters more accurately, it would be necessary to
perform an experiment at another frequency such as Q-band.
(28) For comparison of Mn−Ccarb bond lengths, see, for example:
(a) Hock, J. H.; Schaper, L.-A.; Herrmann, W. A.; Kuhn, F. E. Chem.
̈
Soc. Rev. 2013, 42, 5073−5089. (b) Abernethy, C. D.; Cowley, A. H.;
Jones, R. A.; Macdonald, C. L. B.; Shukla, P.; Thompson, L. K.
Organometallics 2001, 20, 3629−3631. (c) Chai, J.; Zhu, H.; Most, K.;
Roesky, H. W.; Vidovic, D.; Schmidt, H.-G.; Noltemeyer, M. Eur. J.
Inorg. Chem. 2003, 4332−4337. (d) Chai, J.; Zhu, H.; Peng, Y.;
Roesky, H. W.; Singh, S.; Schmidt, H.-G.; Noltemeyer, M. Eur. J. Inorg.
Chem. 2004, 2673−2677. (e) Pugh, D.; Wright, J. A.; Freeman, S.;
Danopoulos, A. A. Dalton Trans. 2006, 775−782. (f) Kennedy, A. R.;
Klett, J.; Mulvey, R. E.; Robertson, S. D. Eur. J. Inorg. Chem. 2011,
4675−46790. (g) Musgrave, R. A.; Turbervill, R. S. P.; Irwin, M.;
Goicoechea, J. M. Angew. Chem., Int. Ed. 2012, 51, 10832−10835.
(h) Kropp, H.; King, A. E.; Khusniyarov, M. M.; Heinemann, F. W.;
K
dx.doi.org/10.1021/ic4024053 | Inorg. Chem. XXXX, XXX, XXX−XXX