3388
Organometallics 2002, 21, 3388-3394
Liga n d Su bstitu tion P r ocesses on Ca r bon ylm eta l
Der iva tives. 3.1 Rea ction of
Hyd r id op en ta ca r bon ylch r om a tes w ith P h osp h in es
J ean-J acques Brunet,* Ousmane Diallo, Bruno Donnadieu, and
Emmanuel Roblou
Laboratoire de Chimie de Coordination du CNRS, Unite´ No. 8241, Lie´e par Conventions,
a` l’Universite´ Paul Sabatier et a` l’Institut National Polytechnique, 205 Route de Narbonne,
31077 Toulouse Cedex 04, France
Received February 19, 2002
The reaction of K+[HCr(CO)5]- with phosphanes PR3 (R ) Et, Ph, NMe2) in THF at 65 °C
affords the disubstituted complexes trans-Cr(CO)4(PR3)2 isolated in 57-70% yield. The X-ray
crystal structures of trans-Cr(CO)4(PR3)2 derivatives have been determined for R ) Et and
NMe2. These reactions proceed first by exchange of one carbon monoxide ligand, generating
the monosubstituted hydridotetracarbonylchromates K+[HCr(CO)4PR3]-, observed and
characterized by NMR spectroscopy for R ) Et and Ph. The second step involves substitu-
tion of the hydride ligand of K+[HCr(CO)4PR3]- to give the disubstituted derivatives trans-
Cr(CO)4(PR3)2. These ligand exchange processes are discussed and compared with the reaction
-
of phosphanes with the dinuclear bridged K+(µ-H)[Cr(CO)5]2 .
In tr od u ction
tuted Fe(CO)2P3 complexes.12 Furthermore, the reaction
of 1 with phosphines in THF produced a 1/1 mixture of
Fe(CO)3P2 and K2Fe(CO)4, which can be easily sepa-
rated.6 This reaction constitutes the more convenient
preparation of K2Fe(CO)4,13 a non-pyrophoric substi-
tute of the Collman reagent, Na2Fe(CO)4.14 The reaction
mechanisms have been rationalized.1,6,15 In all cases, the
first step is the substitution of a carbon monoxide
ligand of K+[HFe(CO)4]-, leading to K+[HFe(CO)3P]-
complexes. In only one case (P ) P(OMe)3, THF as
solvent) a second CO substitution was observed, leading
quantitatively to the disubstituted hydridoferrate
K+[HFe(CO)2P2]-.1 In other cases, depending on the
nature of P and the nature of the solvent, the
K+[HFe(CO)3P]- complexes either can be isolated or
evolve in situ to selectively afford one of the above
neutral complexes.5
Ligand substitution processes in transition-metal
complexes have attracted much attention, both for the
design of specific syntheses of heteroleptic complexes
and for a contribution to the understanding of reaction
mechanisms, particularly the loss of small molecules or
ions from low-valent metal complexes.2,3 In this respect,
neutral metal carbonyls, especially iron carbonyls, have
been particularly studied.4
In the series of iron carbonyls, we were the first to
report, some years ago, that the anionic hydrido com-
plex, K+[HFe(CO)4]-, 1, is a very versatile material for
the high yield synthesis of a large variety of phosphane-
substituted iron carbonyl complexes, most of which were
described for the first time.5 Indeed, depending on the
characteristics of the phosphorus ligand (cone angle θ,
pKa) and the nature of the solvent (protic or aprotic),
the reaction of 1 with phophites and phosphines (there-
after designated P) highly selectively leads to monosub-
stituted hydrido complexes K+[HFe(CO)3P]- 6 or neutral
disubstituted dihydrido complexes H2Fe(CO)2P2,7-9 but
also to disubstituted Fe(CO)3P2,10,11 and even trisubsti-
As part of our interest in the applications of hydri-
docarbonylmetalates in organic synthesis and homoge-
neous catalysis,16,17 we recently investigated the study
of the reactivity of the group VI analogue K+[HCr(CO)5]-,
2, in organic synthesis.18-20 In addition, in light of the
(7) Brunet, J .-J .; Kindela, F.-B.; Labroue, D.; Neibecker, D. Inorg.
Chem. 1990, 29, 4152-4153.
* Corresponding author. Fax: 33 5 61 555 30 03. E-mail: brunet@
lcc-toulouse.fr.
(8) Brunet, J .-J .; Kindela, F.-B.; Neibecker, D. Inorg. Synth. 1992,
29, 156-160.
(1) Part of the Ph.D. Thesis of E. Roblou. For Part 2 of the series,
see: Brunet, J .-J .; Commenges, G.; Kindela, F.-B.; Neibecker, D.
Organometallics 1992, 11, 3023-3030.
(2) Basolo, F.; Pearson, R. G. Mechanisms of Inorganic Reactions;
Wiley: New York, 1968; Basolo, F. Inorg. Chim. Acta 1981, 50, 65-
70.
(3) Albers, M. O.; Coville, N. J . Coord. Chem. Rev. 1984, 53, 227-
259. Luth, T. Y. Coord. Chem. Rev. 1984, 60, 255-276.
(4) Darensbourg, D. J . In Advances in Organometallic Chemistry;
Stone, F. G. A., West, R., Eds.; Academic Press: New York, 1982; Vol.
21, pp 113-150.
(5) For a review, see: Brunet, J .-J .; Chauvin, R.; Diallo, O.; Kindela,
P.; Leglaye, P.; Neibecker, D. Coord. Chem. Rev. 1998, 178-180, 331-
351.
(9) Arion, V.; Brunet, J .-J .; Neibecker, D. Inorg. Chem. 2001, 2628-
2630.
(10) Brunet, J .-J .; Kindela, F.-B.; Neibecker, J . Organomet. Chem.
1989, 368, 209-212.
(11) Brunet, J .-J .; Kindela, F.-B.; Neibecker, D. Inorg. Synth. 1992,
29, 151-156.
(12) Brunet, J .-J .; Kindela, F.-B.; Neibecker, D. Inorg. Synth. 1996,
31, 202-210.
(13) Baby, A.; Brunet, J .-J .; Kindela, F.-B.; Neibecker, D. Synth.
Comm. 1994, 24, 2827-2834.
(14) Collman, J . P. Acc. Chem. Res. 1975, 8, 342-347.
(15) Brunet, J .-J .; Kindela, F.-B.; Neibecker, D. Phosphorus, Sulfur
Silicon 1993, 77, 65-68.
(6) Brunet, J .-J .; Commenges, G.; Kindela, F.-B.; Neibecker, D.
Organometallics 1992, 11, 1343-1350.
(16) Brunet, J .-J . Chem. Rev. 1990, 90, 1041-1059.
(17) Brunet, J .-J . Eur. J . Inorg. Chem. 2000, 1377-1390.
10.1021/om020130b CCC: $22.00 © 2002 American Chemical Society
Publication on Web 06/29/2002