ChemComm
Communication
C. Darcel, Adv. Synth. Catal., 2012, 354, 1879–1884; (c) J. Zheng,
L. C. Misal Castro, T. Roisnel, C. Darcel and J. B. Sortais, Inorg. Chim.
Acta, 2012, 380, 301–307; (d) L. C. Misal Castro, D. Bøzier, J. B.
Sortais and C. Darcel, Adv. Synth. Catal., 2011, 353, 1279–1284;
(e) B. Bhattacharya, J. A. Krause and H. Guan, Organometallics, 2011,
30, 4720–4729; ( f ) J. Yang and T. Don Tilley, Angew. Chem., Int. Ed., 2010,
49, 10186–10188; (g) N. S. Shaikh, K. Junge and M. Beller, Org. Lett.,
2007, 9, 5429–5432; for reviews, see: (h) M. Zhang and A. Zhang, Appl.
Organomet. Chem., 2010, 24, 751–757; (i) K. Junge, K. Schrçder and
M. Beller, Chem. Commun., 2011, 47, 4849–4859; ( j) F. Jiang, D. Bezier,
J. B. Sortais and C. Darcel, Adv. Synth. Catal., 2011, 353, 239–244;
(k) R. H. Morris, Chem. Soc. Rev., 2009, 38, 2282–2291.
5 For nickel catalyzed hydrosilylation reactions, see: (a) J. Zheng,
C. Darcel and J.-B. Sortais, Catal. Sci. Technol., 2013, 3, 81–84;
(b) L. Postigo and B. Royo, Adv. Synth. Catal., 2012, 354, 2613–2618;
(c) L. P. Bheeter, M. Henrion, L. Brelot, C. Darcel, M. J. Chetcuti,
J. Sortais and V. Ritleng, Adv. Synth. Catal., 2012, 354, 2619–2624;
(d) S. Kundu, W. W. Brennessel and W. D. Jones, Inorg. Chem., 2011, 50,
9443–9453; (e) S. Chakraborty, J. A. Krause and H. Guan, Organo-
metallics, 2009, 28, 582–586; ( f ) B. L. Tran, M. Pink and D. J. Mindiola,
Organometallics, 2009, 28, 2234–2243; (g) F.-G. Fontaine, R.-V. Nguyen
and D. Zargarian, Can. J. Chem., 2003, 81, 1299–1306; (h) P. Boudjouk,
B.-H. Han, J. R. Jacobsen and B. J. Hauck, J. Chem. Soc., Chem.
Commun., 1991, 1424–1425; (i) P. Boudjouk, S.-B. Choi, B. J. Hauck
and A. B. Rajkumar, Tetrahedron Lett., 1998, 39, 3951–3952.
6 M. Lakshmi kantam, S. Laha, J. Yadav, P. R. Likhar, B. Sreedhar,
S. Jha, S. Bhargava, M. Udayakiran and M. Jagadeesh, Org. Lett.,
2008, 10, 2979–2982.
7 (a) E. Peterson, A. Y. Khalimon, R. Simionescu, L. G. Kuzmina, J. A. K.
Howard and G. I. Nikonov, J. Am. Chem. Soc., 2009, 131, 908–909;
Scheme 3 X-ray structure of 3 (thermal ellipsoids drawn at 30% prob-
ability) and the proposed catalytic cycle for the hydrosilylation of alde-
hydes catalyzed by [Ru(p-cymene)Cl2]2 1.
˜
(b) A. C. Fernandes, R. Fernandes, C. C. Romao and B. Royo, Chem.
Commun., 2005, 213–214.
8 V. K. Dioumaev and R. M. Bullock, Nature, 2000, 424, 530–532.
9 (a) J. J. K. Smith, K. A. Nolin, H. P. Gunterman and F. Dean Toste, J. Am.
Chem. Soc., 2003, 125, 4056–4057; (b) K. A. Nolin, J. R. Krumper,
M. D. Pluth, R. G. Bergman and F. D. Toste, J. Am. Chem. Soc., 2007,
129, 14684–14696; (c) G. Du, P. E. Fanwick and M. M. Abu-omar, J. Am.
Chem. Soc., 2007, 129, 5180–5187; (d) H. Dong and H. Berke, Adv. Synth.
Catal., 2009, 351, 1783–1788; (e) C. K. Toh, Y. N. Sum, W. K. Fong,
S. G. Ang and W. Y. Fan, Organometallics, 2012, 31, 3880–3887.
10 (a) C. Cheng and M. Brookhart, J. Am. Chem. Soc., 2012, 134,
11304–11307; (b) C. Cheng and M. Brookhart, Angew. Chem., Int.
Ed., 2012, 51, 9422–9424; (c) S. Park and M. Brookhart, Organo-
metallics, 2010, 29, 6057–6064.
11 (a) Hydrosilylation of amides: B. Li, J.-B. Sortais and C. Darcel, Chem.
Commun., 2013, 49, 3691–3693; (b) J. T. Reeves, Z. Tan, M. A. Marsini,
Z. S. Han, Y. Xu, D. C. Reeves, H. Lee, B. Z. Lu and C. H. Senanayake, Adv.
Synth. Catal., 2013, 355, 47–52; (c) Hydrosilylation of esters and amides:
K. Matsubara, T. Iura, T. Maki and H. Nagashima, J. Org. Chem., 2002, 67,
4985–4988; (d) Hydrosilylation of esters: (a) ref. 4a; (b) M. Igarashi and
T. Fuchikami, Tetrahedron Lett., 2001, 42, 2149–2151.
12 As far as we know, such a chemoselective process is currently limited to
only one reported example of dinuclear ruthenium carbonyl complex,
which catalyzed the reaction under photolytic conditions. See: Y. Do,
J. Han, Y. H. Rhee and J. Park, Adv. Synth. Catal., 2011, 353, 3363–3366.
13 For catalytic hydrosilylation of aldehydes, see: (a) for Fe: Ref. 4f; (b) for Au:
D. Lantos, M. Contel, S. Sanz, A. Bodor and I. T. Horvath, J. Organomet.
Chem., 2007, 692, 1799–1805; (c) for Ag: B. M. Wile and M. Stradiotto, Chem.
Commun., 2006, 4104–4106; (d) Grubbs’ 1st generation catalyst is reported
to catalyse the hydrosilylation of aldehydes and ketones. See: S. V. Maifeld,
R. L. Miller and D. Lee, Tetrahedron Lett., 2002, 43, 6363–6366.
intermediate IV. The coordination of aldehydes to IV regenerates I
and closes the catalytic cycle.
In conclusion, we have demonstrated a facile transformation
for hydrosilylation of aldehydes using a commercially available
dinuclear ruthenium complex [Ru( p-cymene)Cl2]2 1 as a catalyst.
Using this novel catalytic method chemoselective hydrosilylation of
aldehydes in the presence of other functionalities is also achieved.
Potential intermediates [{(Z6-p-cymene)RuCl}2(m-H-m-Cl)] 2 and
[(Z6-p-cymene)Ru(H)2(SiEt3)2]
3 involved in the reaction are
identified and independently synthesized and characterized. The
structures of 2 and 3 are solved by single crystal X-ray analyses. The
proposed mechanism involves Ru(II)–Ru(IV) cycles and a 1,3-hydride
migration that reduce the aldehyde at the metal centre.
We thank the Department of Science and Technology,
New Delhi, and NISER for financial support. B.C. is grateful
to UGC for a research fellowship. C.G. is a Ramanujan Fellow.
Notes and references
1 For general reviews on hydrosilylation, see: (a) Hydrosilylation: A
Comprehensive Review on Recent Advances, ed. B. Marciniec, Springer, 14 See ESI†.
¨
Heidelberg, 2009; (b) O. Riant, N. Mostefaı and J. Courmarcel, 15 The intermediate 2 could also be isolated from the reaction mixture
Synthesis, 2004, 2943–2958.
2 The Chemistry of Organic Silicon Compounds, ed. Z. Rappoport and
Y. Apeloig, Wiley, New York, 2001, vol. 3.
3 (a) B. T. Gregg and A. R. Cutler, J. Am. Chem. Soc., 1996, 118,
10069–10084; (b) M. D. Cavanaugh, B. T. Gregg and A. R. Cutler,
upon completion of the reaction, which displayed identical spectral
data to that of prepared complex 2.
16 A similar Ru(IV) complex containing trimethyl silyl ligands is reported.
See: P. I. Djurovich, P. J. Carroll and D. H. Berry, Organometallics, 1994,
13, 2551–2553.
Organometallics, 1996, 15, 2764–2769; (c) P. K. Hanna, B. T. Gregg 17 Similar to 3, another intermediate complex containing bulkier
and A. R. Cutler, Organometallics, 1991, 10, 31–33.
4 For iron catalyzed hydrosilylation reactions, see: (a) H. Li, L. C. M.
Castro, J. Zheng, T. Roisnel, V. Dorcet, J.-B. Sortais and C. Darcel,
triphenylsilane was also observed in situ by 1H NMR. The mono-
nuclear metal dihydride with triphenylsilane ligands resonated a
characteristic hydride signal at À11.71 ppm.
¨
Angew. Chem., Int. Ed., 2013, 52, 8045–8049; (b) D. Bøzier, G. T. 18 T. Tuttle, D. Wang, W. Thiel, J. Kohler, M. Hofmann and J. Weis,
Venkanna, L. C. Misal Castro, J. Zheng, T. Roisnel, J.-B. Sortais and
Dalton Trans., 2009, 5894–5901.
890 | Chem. Commun., 2014, 50, 888--890
This journal is ©The Royal Society of Chemistry 2014