Organic Letters
Letter
(8) (a) Zoller, J.; Fabry, D. C.; Ronge, M. A.; Rueping, M. Angew.
Chem., Int. Ed. 2014, 53, 13264−13268. (b) Xia, X.-F.; Zhang, G. W.;
Wang, D.; Zhu, S.-L. J. Org. Chem. 2017, 82, 8455−8463. (c) Wu, C.-
J.; Meng, Q.-Y.; Lei, T.; Zhong, J.-J.; Liu, W.-Q.; Zhao, L.-M.; Li, Z.-J.;
Chen, B.; Tung, C.-H.; Wu, L.-Z. ACS Catal. 2016, 6, 4635−4639.
(9) (a) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48,
9533−9537. (b) Cera, G.; Chiarucci, M.; Mazzanti, A.; Mancinelli,
M.; Bandini, M. Org. Lett. 2012, 14, 1350−1353. (c) Cera, G.;
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Author Contributions
§Y.L. and A.P. contributed equally to this work.
Notes
́
Piscitelli, S.; Chiarucci, M.; Fabrizi, G.; Goggiamani, A.; Ramon, R. S.;
Nolan, S. P.; Bandini, M. Angew. Chem., Int. Ed. 2012, 51, 9891−9895.
(d) Chiarucci, M.; Mocci, R.; Syntrivanis, L.-D.; Cera, G.; Mazzanti,
A.; Bandini, M. Angew. Chem., Int. Ed. 2013, 52, 10850−10853.
(e) Jia, M.; Cera, G.; Pe rotta, D.; Bandini, M. Chem. - Eur. J. 2014,
20, 9875−9878. (f) Jia, M.; Monari, M.; Yang, Q.-Q.; Bandini, M.
Chem. Commun. 2015, 51, 2320−2323. (g) Rocchigiani, L.; Jia, M.;
Bandini, M.; Macchioni, A. ACS Catal. 2015, 5, 3911−3915.
(h) Ocello, R.; De Nisi, A.; Jia, M.; Yang, Q.-Q.; Giacinto, P.;
Bottoni, A.; Miscione, G. P.; Bandini, M. Chem. - Eur. J. 2015, 21,
18445−18453. (i) Romano, C.; Jia, M.; Monari, M.; Manoni, E.;
Bandini, M. Angew. Chem., Int. Ed. 2014, 53, 13854−13857. (j) An, J.;
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Acknowledgement is made to University of Bologna for
financial support. Y.L. thanks the Chinese Scholarship Council
(No. 201609120008) for funding support.
Parodi, A.; Monari, M.; Castineira Reis, M.; Silva Lopez, C.; Bandini,
̃
M. Chem.Eur. J. 2017, 23, 2442−2449. (k) Favaretto, L.; An, J.;
Sambo, M.; De Nisi, A.; Bettini, C.; Melucci, M.; Kovtun, A.; Liscio,
A.; Palermo, V.; Bottoni, A.; Zerbetto, F.; Calvaresi, M.; Bandini, M.
Org. Lett. 2018, 20, 3705−3709. (l) An, J.; Lombardi, L.; Grilli, S.;
Bandini, M. Org. Lett. 2018, 20, 7380−7383. (m) Cerveri, A.; Nieto
REFERENCES
■
(1) (a) Arene Chemistry: Reaction Mechanisms and Methods for
Aromatic Compounds; Mortier, J., Ed.; John Wiley & Sons, 2016.
(b) Asymmetric Dearomatization Reactions; You, S.-L., Ed.; Wiley-
VCH, 2016.
́
Faza, O.; Silva Lopez, C.; Grilli, S.; Monari, M.; Bandini, M. J. Org.
(2) For a selection of reviews, see: (a) Dembitsky, V. M.;
Gloriozova, T. A.; Poroikov, V. V. Mini-Rev. Med. Chem. 2005, 5,
319−336. (b) Al-Mourabit, A.; Zancanella, M. A.; Tilvi, S.; Romo, D.
Nat. Prod. Rep. 2011, 28, 1229−1260. (c) Berlin, A.; Vercelli, B.;
Zotti, G. Polym. Rev. 2008, 48, 493−515. (d) Biava, M.; Porretta, G.
C.; Poce, G.; Battilocchio, C.; Alfonso, S.; De Logu, A.; Manetti, F.;
Botta, M. ChemMedChem 2011, 6, 593−599. (e) Domagala, A.;
Jarosz, T.; Lapkowski, M. Eur. J. Med. Chem. 2015, 100, 176−187.
(f) Boota, M.; Anasori, B.; Voigt, C.; Zhao, M.-Q.; Barsoum, M. W.;
Gogotsi, Y. Adv. Mater. 2016, 28, 1517−1522. (g) Canjeevaram
Balasubramanyam, R. K.; Kandjani, A. E.; Jones, L. A.; Periasamy, S.
R.; Wong, S.; Narayan, R.; Bhargava, S. K.; Ippolito, S. J.; Basak, P.
Adv. Electron. Mater. 2018, 4, 1700626.
Chem. 2019, 84, 6347−6355.
(10) (a) Yang, Q.-Q.; Marchini, M.; Xiao, W.-J.; Ceroni, P.; Bandini,
M. Chem. - Eur. J. 2015, 21, 18052−18056. (b) Sauer, C.; Liu, Y.; De
Nisi, A.; Protti, S.; Fagnoni, M.; Bandini, M. ChemCatChem 2017, 9,
4456−4459.
(11) (a) Jiang, H.; Cheng, Y.; Wang, R.; Zheng, M.; Zhang, Y.; Yu, S.
Angew. Chem., Int. Ed. 2013, 52, 13289−13292. (b) Xuan, J.; Xia, X.-
D.; Zeng, T.-T.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Angew.
Chem., Int. Ed. 2014, 53, 5653−5656. (c) Rong, J.; Deng, L.; Tan, P.;
Ni, C.; Gu, Y.; Hu, J. Angew. Chem., Int. Ed. 2016, 55, 2743−2747.
(d) Jiang, H.; Cheng, Y.; Zhang, Y.; Yu, S. Org. Lett. 2013, 15, 4884−
4887.
(12) For recent uses of azides in pyrrole synthesis, see: (a) Dong, H.;
Shen, M.; Redford, J. E.; Stokes, B. J.; Pumhrey, A. L.; Driver, T. G.
Org. Lett. 2007, 9, 5191−5194. (b) Ng, E. P. J.; Wang, Y.-F.; Chiba, S.
Synlett 2011, 2011, 783−786. (c) Chen, F.; Shen, T.; Cui, Y.; Jiao, N.
Org. Lett. 2012, 14, 4926−4929. (d) Wu, Y.; Zhu, L.; Luo, X.; Huang,
X. J. Org. Chem. 2015, 80, 11407−11416.
(13) (a) Platz, M.S. In Reactive Intermediate Chemistry; Moss, R. A.,
Platz, M. S., Jones, M., Jr., Eds.; John Wiley & Sons: Hoboken, NJ,
2004; pp 501−560;. (b) Voskresenska, V.; Wilson, R. M.; Panov, M.;
Tarnovsky, A. N.; Krause, J. A.; Vyas, S.; Winter, A. H.; Hadad, C. M.
J. Am. Chem. Soc. 2009, 131, 11535−11547. (c) Chen, Y.; Kamlet, A.
S.; Steinman, J. B.; Liu, D. R. Nat. Chem. 2011, 3, 146−153.
(d) Morris, S. A.; Wang, J.; Zheng, N. Acc. Chem. Res. 2016, 49,
1957−1968. (e) Konev, M. O.; McTeague, T. A.; Johannes, J. W. ACS
Catal. 2018, 8, 9120−9124 For a review on the synthetic applications
of aminyl radicals/amine radical cations, see: . (f) Zhao, Y.; Xia, W.
Chem. Soc. Rev. 2018, 47, 2591−2608.
(3) For seminal and historic approaches in the synthesis of pyrroles
see: (a) Knorr, L. Libigs Ann. Chem. 1886, 236, 290−332. (b) Paal, C.
Ber. Dtsch. Chem. Ges. 1885, 18, 367−371. (c) Hantzsch, A. Ber. Dtsch.
Chem. Ges. 1890, 23, 1474−1476. See also: (d) Bergman, J.; Janosik,
T. Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ramsden,
C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier Science, 2008;
́
́
Vol. 3, pp 269−351. (e) Estevez, V.; Villacampa, M.; Menendez, J. C.
́
Chem. Soc. Rev. 2014, 43, 4633−4657. (f) Leonardi, M.; Estevez, V.;
́
Villacampa, M.; Menendez, J. C. Synthesis 2019, 51, 816−828.
(4) (a) Li, Q.; Fan, A.; Lu, Z.; Cui, Y.; Lin, W.; Jia, Y. Org. Lett.
2010, 12, 4066−4069. (b) Huang, H.; Tang, L.; Cai, J.; Deng, G.-J.
RSC Adv. 2016, 6, 7011−7014. (c) Gao, Y.; Hu, C.; Wan, J.-P.; Wen,
C. Tetrahedron Lett. 2016, 57, 4854−4857. (d) Zeng, J.-C.; Xu, H.;
Zhang, Z. Tetrahedron Lett. 2017, 58, 674−678. (e) Tzankova, D.;
Vladimirova, S.; Peikova, L.; Gerogieva, M. J. Chem. Technol. Met.
2018, 53, 451−464.
(5) For recent review and monographs, see: (a) Photoorganocatalysis
in Organic Synthesis; Fagnoni, M., Protti, S., Ravelli, D., Eds.; World
Scientific Publishing Europe Ltd.: Singapore, 2019. (b) Ravelli, D.;
Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850−9913. (c) Wang,
(14) Huang, W.; Chen, S.; Chen, Z.; Yue, M.; Li, M.; Gu, Y. J. Org.
Chem. 2019, 84, 5655−5666.
(15) Although the role of 4,4′-(tBu)2bpy as an additive is not clear at
the present, its positive impact on the overall process can be
rationalized in terms of cophotosensitizer and/or stabilizer of the
[Ru(II)] complex.
́
C.-S.; Dixneuf, P. H.; Soule, J.-F. Chem. Rev. 2018, 118, 7532−7585.
(d) Visible Light Photocatalysis in Organic Chemistry; Stephenson, C.
R. J., Yoon, T. P., MacMillan, D. W. C., Eds.; John Wiley & Sons;
Weinheim, 2018.
(16) (a) Vlcek, A. A.; Dodsworth, E. S.; Pietro, W. J.; Lever, A. B. P.
Inorg. Chem. 1995, 34, 1906−1913. (b) Herbranson, D.; Hawley, M.
J. Org. Chem. 1990, 55, 4297−4303. (c) Konev, M. O.; McTeague, T.
A.; Johannes, J. W. ACS Catal. 2018, 8, 9120−9124. (d) Land, E. J.;
Porter, G. Trans. Faraday Soc. 1963, 59, 2027−2037.
(6) For a recent comprehensive book chapter on the subject, see:
Hari, D. P.; Hering, T.; Konig, B. In Visible Light Photocatalysis in
Organic Synthesis; Stephenson, C., Yoon, T., MacMillan, D. W. C.,
Eds.; Wiley-VCH, Chapter 8, pp 273−282.
(7) Lei, T.; Liu, W.-Q.; Li, J.; Huang, M.-Y.; Yang, B.; Meng, Q.-Y.;
Chen, B.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2016, 18, 2479−2482.
́
(17) Nkolo, P.; Audran, G.; Bikanga, R.; Bremond, P.; Marque, S. R.
A.; Roubaud, V. Org. Biomol. Chem. 2017, 15, 6167−6176.
D
Org. Lett. XXXX, XXX, XXX−XXX