10.1002/anie.202007649
Angewandte Chemie International Edition
COMMUNICATION
The arthrosis inflammation model of mice was established by
intra-articular injection of 33 mM (75 μL) hydrogen peroxide, then
NIR-II CLS were used by sequentially intra-articular injection into
a mouse. With the progress of reaction with H2O2, the CL signals
and SNRs in the arthrosis area were increased over time (Figure
5d-f). The maximum SNR of 5.85 in the arthrosis area was
observed at 30 min. We also aquired the NIR-II FL signals with
BBTD700 micelle (Figure 5d). The FL signal was gradually
increased to a maximum at 5 min post-injection and dropped 44%
at 60 min (Figure 5e). During this whole period, the maximum FL
SNR of 1.24 in the arthrosis area was obtained at 5 min, which
was still 4.5-fold lower than that with CL imaiging (Figure 5f).
Besides, the smaller full width at half maxima (FWHM = 6.73 mm)
of the arthrosis position tracing in CL imaging over NIR-II FL
imaging (FWHM = 7.38 mm) also showed superior accuracy
(Figure 5g). For comparison, we also carried out control
experiment on the lymphatic and arthrosis imaging with healthy
mice. No CL signals were observed in the above two regions due
to the lack of H2O2. Based on the above results, NIR-II CLS can
achieve higher SNR for in vivo inflammation imaging.
In summary, we have developed a NIR-II CL sensor for
overcoming the drawbacks of short-wavelength CL emission and
lower penetration depth through engineering the cascade CRET
and FRET processes.The as-prepared biocompatible NIR-II CLS
have deeper penetration depth and higher SNR for in vivo CL
inflammation imaging. To reduce the energy loss during multi-
step energy transfer, we rationally designed the dyes with
excellent energy match and the large Stokes shift characteristics
to effeciently transfer the chemical energy, which made a better
foundation for the development of in vivo CL NIR-II imaging. It
provides a promising perspective and strategy for constructing
probes with extended emission wavelength in classical CL for
higher constrast imaging. Meanwhile, it also offers the possibility
of sensing various analytes by changing the chemiluminescent
substrate in the furture. Although the sensitivity and brightness of
the current NIR-II CLS shown here is still not ideal, the present
results indicated that the NIR-II CLS is promising for NIR-II CL in
vivo imaging with higher SNR compared to the NIR-II
fluorescence signals in the same system. Besides, the NIR-II CLS
may be further improved by rationally designing probes with
higher quantum yield (for example, the introduction of substituted
thiophene and shielding units[19]), larger molar extinction
coefficient, and better oxidation resistance. Given CL imaging
immune to background interference and light damage from the
external excitation light, it could motivate more pre-clinical and
clinical translation applications.
[1] a) M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, Science 2007, 317, 1749-
1753; b) T.-L. Liu, S. Upadhyayula, D. E. Milkie, V. Singh, K. Wang, I. A.
Swinburne, K. R. Mosaliganti, Z. M. Collins, T. W. Hiscock, J. Shea, A. Q.
Kohrman, T. N. Medwig, D. Dambournet, R. Forster, B. Cunniff, Y. Ruan, H.
Yashiro, S. Scholpp, E. M. Meyerowitz, D. Hockemeyer, D. G. Drubin, B. L.
Martin, D. Q. Matus, M. Koyama, S. G. Megason, T. Kirchhausen, E. Betzig,
Science 2018, 360, eaaq1392; c) R. Gao, S. M. Asano, S. Upadhyayula, I.
Pisarev, D. E. Milkie, T.-L. Liu, V. Singh, A. Graves, G. H. Huynh, Y. Zhao,
J. Bogovic, J. Colonell, C. M. Ott, C. Zugates, S. Tappan, A. Rodriguez, K.
R. Mosaliganti, S.-H. Sheu, H. A. Pasolli, S. Pang, C. S. Xu, S. G. Megason,
H. Hess, J. Lippincott-Schwartz, A. Hantman, G. M. Rubin, T. Kirchhausen,
S. Saalfeld, Y. Aso, E. S. Boyden, E. Betzig, Science 2019, 363, eaau8302.
[2] a) G. Hong, A. L. Antaris, H. Dai, Nat. Biomed. Eng. 2017, 1, 0010; b) J.
Huang, J. Li, Y. Lyu, Q. Miao, K. Pu, Nat. Mater. 2019, 18, 1133-1143; c) S.
Wang, Y. Fan, D. Li, C. Sun, Z. Lei, L. Lu, T. Wang, F. Zhang, Nat. Commun.
2019, 10, 1058; d) A. L. Antaris, H. Chen, K. Cheng, Y. Sun, G. Hong, C. Qu,
S. Diao, Z. Deng, X. Hu, B. Zhang, X. Zhang, O. K. Yaghi, Z. R.
Alamparambil, X. Hong, Z. Cheng, H. Dai, Nat. Mater. 2016, 15, 235-242;
e) Q. G. Zang, J. Y. Yu, W. B. Yu, J. Qian, R. R. Hu, B. Z. Tang, Chem. Sci.
2018, 9, 5165-5171; f) C. Sun, B. Li, M. Zhao, S. Wang, Z. Lei, L. Lu, H.
Zhang, L. Feng, C. Dou, D. Yin, H. Xu, Y. Cheng, F. Zhang, J. Am. Chem.
Soc. 2019, 141, 19221-19225; g) Y. Li, X. Li, Z. Xue, M. Jiang, S. Zeng, J.
Hao, Biomaterials 2018, 169, 35-44; h) Y. Yang, P. Wang, L. Lu, Y. Fan, C.
Sun, L. Fan, C. Xu, A. M. El-Toni, M. Alhoshan, F. Zhang, Anal. Chem. 2018,
90, 7946-7952; i) S. He, J. Song, J. Qu, Z. Chen, Chem. Soc. Rev. 2018,
47, 4258-4278; j) Kenry, Y. Duan, B. Liu, Adv. Mater. 2018, 30, 1802394; k)
Y. Miao, C. Gu, Y. Zhu, B. Yu, Y. Shen, H. Cong, ChemBioChem. 2018, 19,
2522-2541; l) J. A. Carra, M. Aellena, D. Frankea, P. T. C. So, O. T. Brunsa,
M. G. Bawendia, Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 9080-9085; m)
F. Ding, C. Li, Y. Xu, J. Li, H. Li, G. Yang, Y. Sun, Adv. Healthc. Mater. 2018,
7, 1800973; n) A. M. Smith, M. C. Mancini, S. Nie, 2009, 4, 710-711; o) X.
Zeng, Y. Xiao, J. Lin, S. Li, H. Zhou, J. Nong, G. Xu, H. Wang, F. Xu, J. Wu,
Z. Deng, X. Hong, Adv. Healthc. Mater. 2018, 7, 1800589; p) Y. Sun, X.
Zeng, Y. Xiao, C. Liu, H. Zhu, H. Zhou, Z, Chen, F. Xu, J. Wang, M. Zhu, J.
Wu, M. Tian, H. Zhang, Z. Deng, Z. Chen, X. Hong, Chem. Sci. 2018, 9,
2092-2097; q) X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, S. Nie, Nat.
Biotechnol. 2004, 22, 969-976; r) S. L. Jacques, Phy. Med. Biol. 2013, 58,
R37-R61; s) H. Maeda, T. Kowada, J. Kikuta, M. Furuya, M. Shirazaki, S.
Mizukami, M. Ishii, K. Kikuchi, Nat. Chem. Biol. 2016, 12, 579-585; t) W.
Zheng, P. Huang, Z. Gong, D. Tu, J. Xu, Q. Zou, R. Li, W. You, J.-C. G.
Bünzli, X. Chen, Nat. Commun. 2018, 9, 3462; u) E. Y. Zhou, H. J. Knox, C.
J. Reinhardt, G. Partipilo, M. Nilges, J. Chan, J. Am. Chem. Soc. 2018, 140,
11686-11697; v) C. J. Reinhardt, R. Xu, J. Chan, Chem. Sci. 2020, 11,
1587-1592; w) Y. Sang, F. Cao, W. Li, L. Zhang, Y. You, Q. Deng, K. Dong,
J. Ren, X. Qu, J. Am. Chem. Soc. 2020, 142, 5177–5183. x) J. Huang, K.
Pu, Angew. Chem. Int. Ed. 2020, 59, 2-17.
[3] a) B. Del Rosal, D. H. Ortgies, N. Fernandez, F. Sanz-Rodriguez, D. Jaque,
E. M. Rodriguez, Adv. Mater. 2016, 28, 10188-10193; b) M. Y. Berezin, S.
Achilefu, Chem. Rev. 2010, 110, 2641-2684.
[4] a) S. Diao, G. Hong, A. L. Antaris, J. L. Blackburn, K. Cheng, Z. Cheng, H.
Dai, Nano Res. 2015, 8, 3027-3034; b) J. Ruff, S. Hüwel, M. J. Kogan, U.
Simon, H. J. Galla, Nanomedicine 2017, 13, 1645-1652.
[5] L. Hu, G. Xu, Chem. Soc. Rev. 2010, 39, 3275-3304.
Acknowledgements
[7] a) A. M. Garcia-Campana, W. R. G. Baeyens, Chemiluminescence in
Analytical Chemistry, Marcel Dekker, NY, USA, 2001; b) P. A. Wingert, H.
Mizukami, A. E. Ostafin, Nanotechnology 2007,18, 295707; c) X. Huang, L.
Li, H. Qian, C. Dong, J. Ren, Angew. Chem. Int. Ed. 2006, 45, 5140-5143;
d) H. Wang, Y. Li, J. Wang, Q. Xu, X. Li, Y. Zhao, Anal. Chim. Acta 2008,
610, 68-73.
The work was supported by the National Key R&D Program of
China (2017YFA0207303), National Natural Science Foundation
of China (NSFC, 21725502, 51961145403), and Key Basic
Research Program of Science and Technology Commission of
Shanghai Municipality (17JC1400100).
[8] a) G. B. Schuster, Accounts Chem. Res. 1979, 12, 366-373; b) T. Wilson,
Photochem. Photobiology. 1995, 62, 601-606; c) J.-Y. Koo, G. B. Schuster,
J. Am. Chem. Soc. 1977, 99, 6107-6109; d) J. A. Koo, S. P. Schmidt, G. B.
Schuster, Proc. Natl. Acad. Sci. U. S. A. 1978, 75, 30-33; e) J.-Y. Koo, G. B.
Schuster, J. Am. Chem. Soc. 1978, 100, 4496-4503.
Keywords: NIR-II imaging• chemiluminescence imaging •
bioimaging • inflammation tracing •
This article is protected by copyright. All rights reserved.