10.1002/chem.202001259
Chemistry - A European Journal
RESEARCH ARTICLE
chloroalkynes/alkynes via direct sp3-C-H functionalization of
ethers, amides, alcohols, and even unactivated alkanes by using
a household fluorescent light bulb. Cheap and readily available
diaryl ketones were used as photocatalyst as well as H-atom
abstractors. The hydroalkylation of alkynes via sp3-C-H bond
functionalization was achieved in an atom economic and redox-
efficient manner. Especially for the synthesis of vinyl halides from
haloalkynes, this process is remarkable as the radical approach
opens an orthogonal pathway compared to transition metal-
catalyzed strategies that are used for alkynylations. Nevertheless,
this process was also feasible if bromoalkynes were used in the
presence of a base. This radical alkynylation sp3-C-H bond offers
an attractive alternative to existing strategies. The mechanistic
studies indicate that the solvent/reactant act as a hydrogen
source. To the best of our knowledge, this is the first access to
chlorovinylated products of ethers and amides. The reaction is
highly regioselective and chemoselective under such conditions.
Due to the immense importance of vinyl halides as the key
building block, this new attractive access from readily available
starting materials in an atom-economic manner is of high value to
the chemical community.
Lee, Y. Qian, J.-H. Park, J.-S. Lee, S.-E. Shim, M.-J. Jin, Adv. Syn. Catal.
2013, 355, 1729-1735; e) A. Thakur, K. Zhang, J. Louie, Chem. Commun.
2012, 48, 203-205; f) G.-P. Lu, K. R. Voigtritter, C. Cai, B. H. Lipshutz, J.
Org. Chem. 2012, 77, 3700-3703; g) P. Espinet, A. M. Echavarren,
Angew. Chem. Int Ed. 2004, 43, 4704-4734; h) A. F. Littke, C. Dai, G. C.
Fu, J. Am. Chem. Soc. 2000, 122, 4020-4028; i) N. Miyaura, A. Suzuki,
Chem. Rev. 1995, 95, 2457-2483; j) J. K. Stille, Angew. Chem. Int. Ed.
1986, 25, 508-524.
[5]
[6]
[7]
a) P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564-
12649; b) J. F. Hartwig, Acc. Chem. Res. 2008, 41, 1534-1544.
E.-L. D. T. R. T. K. K. Beutel, in Ullmann's Encyclopedia of Industrial
Chemistry, Weinheim: Wiley-VCH., 2011
a) C. Boga, S. Bordoni, L. Casarin, G. Micheletti, M. Monari, Molecules
2018, 23, 171; b) M. Si-Fodil, H. Ferreira, J. Gralak, L. Duhamel,
Tetrahedron Lett. 1998, 39, 8975-8978; c) H. Neumann, D. Seebach,
Tetrahedron Lett. 1976, 17, 4839-4842.
[8]
[9]
a) K. Ando, T. Wada, M. Okumura, H. Sumida, Org. Lett. 2015, 17, 6026-
6029; b) D.-J. Dong, H.-H. Li, S.-K. Tian, J. Am. Chem. Soc. 2010, 132,
5018-5020; c) A. Barbero, Y. Blanco, F. Garcia Pulido, synthesis 2000,
2000, 1223-1228; d) G. E. Keck, K. A. Savin, M. Weglarz, J. Org. Chem.,
1995, 60, 3194-3204
a) X.-Y. Lu, M.-L Hong, H.-P. Zhou, Y. WangJ.-Y. Wang, X.-T. Ge, Chem.
Commun. 2018, 54, 4417-4420; b) Y. Xu, M. C. Young, G. Dong, J. Am.
Chem. Soc. 2017, 139, 5716-5719; c) J.-W. Xu, Z.-Z. Zhang, W.-H.; Rao,
B.-F. Shi, J. Am. Chem. Soc. 2016, 138, 10750-10753; d) Y. Li, L. Ge, B.
Qian, K. R. Babu, H. Bao, Tretrahedron Lett. 2016, 57, 5677-5680; (e)
S. Maity, S. Agasti, A. M. Earsad, A. Hazra, D. Maiti, Chem.-Eur. J. 2015,
21, 11320-11324; f) C. W. Cheung, F. E. Zhurkin, X. Hu, J. Am. Chem.
Soc. 2015, 137, 4932-4935; g) B. Liu, T. Zhou, B. Li, S. Xu, H. Song, B.
Wang, Angew. Chem. Int. Ed. 2014, 53, 4191-4195; h) N. Kambe, Y.
Moriwaki, Y. Fujii, T. Iwasaki, J. Terao, Org. Lett. 2011, 13, 4656-4659;
i) Y. Fujii, J. Terao, N. Kambe, Chem. Commun. 2009, 1115-1117.
Acknowledgements
T. A. thanks to DAAD (German Academic Exchange Service) for
support a Ph.D. scholarship. We thank Dr. Gross, Heidelberg
University, for assistance in mass spectroscopy.
[10] a) Y. Zhao, J. Jin, P. W. H. Chan, Adv. Syn. Catal. 2019, 361, 1313-1321;
b) Z.-Y. Song, C.-L. Zhang, S. Ye, Org. Biomol. Chem. 2019, 17, 181-
185; c) S. Zhang, Q.-J. Yao, G.; Liao, X. Li, H. Li, H.-M. Chen, X. Hong,
B.-F. Shi, ACS Catal. 2019, 9, 1956-1961; d) K. Ni, L.-G. Meng, K. Wang,
L. Wang, Org. Lett. 2018, 20, 2245-2248; e) Y. Shen, B. Huang, J. Zheng,
C. Lin, Y. Liu, S. Cui, Org. Lett. 2017, 19, 1744-1747; f) K. Jia, F. Zhang,
H. Huang, Y. Chen, J. Am. Chem. Soc. 2016, 138, 1514-1517; g) J. Xie,
S. Shi, T. Zhang, N. Mehrkens, M. Rudolph, A. S. K. Hashmi, Angew.
Chem. Int. Ed. 2015, 54, 6046-6050; h) F. l. Vaillant, T. Courant, J. Waser,
Angew. Chem. Int. Ed. 2015, 54, 11200-11204; i) H. Tan, H. Li, W. Ji, L.
Wang, Angew. Chem. Int. Ed. 2015, 54, 8374-8377; j) J. Yang, J. Zhang,
L. Qi, C. Hu, Y. Chen, Chem. Commun. 2015, 51, 5275-5278; k) M. Wan,
Z. Meng, H. Lou, L. Liu, Angew. Chem. Int. Ed. 2014, 53, 13845-13849;
l) H. Huang, G. Zhang, L. Gong, S. Zhang, Y. Chen, J. Am. Chem. Soc.
2014, 136, 2280-2283; m) H. Yoshida, Y. Asatsu, Y. Mimura, Y. Ito, J.
Ohshita, K.Taka-ki, Angew. Chem. Int. Ed. 2011, 50, 9676-9679; n) G.
Cahiez, O. Gager, J. Buendia, Angew. Chem. 2010, 49, 1278-1281.
[11] a) A. Hossain, S. Engl, E. Lutsker, O. Reiser, ACS Catal. 2019, 9, 1103-
1109; b) X.-J. Tang, W. R. Dolbier, Angew. Chem. Int. Ed. 2015, 54,
4246-4249; c) P. Riente, M. A. Pericàs, Chem. Sus. Chem. 2015, 8,
1841-1844; d) C.-J. Wallentin, J. D. Nguyen, P. Finkbeiner, C. R. J.
Stephenson, J. Am. Chem. Soc. 2012, 134, 8875-8884; e) J. D. Nguyen,
E. M. D'Amato, J. M. R. Narayanam, C. R. J. Stephenson, Nat. Chem.
2012, 4, 854; f) J. D. Nguyen, J. W. Tucker, M. D. Konieczynska, C. R.
J. Stephenson, J. Am. Chem. Soc. 2011, 133, 4160-4163; g) D. Yang,
Y.-L. Yan, B.-F. Zheng, Q. Gao, N.-Y. Zhu, Org. Lett. 2006, 8, 5757-5760.
[12] a) Z. Li, W.-L. Duan, Angew. Chem. Int. Ed. 2018, 57, 16041-16045.
Keywords: Hydroalkylation • C-H functionalization •
photoorganocatalysis
[1]
a) W.-j. Chung, C. D. Vanderwal, Angew. Chem. Int. Ed. 2016, 55, 4396-
4434; b) R. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem.
2014, 57, 5845-5859; c) C. Singh, M. Hassam, V. P. Verma, A. S. Singh,
N. K. Naikade, S. K. Puri, P. R. Maulik, Kant, J. Med. Chem. 2012, 55,
10662-10673; d) J. K. Nunnery, N. Engene, T. Byrum, Z. Cao, S. V.
Jabba, A. R. Pereira, T. Matainaho, T. F. Murray, W. H. Gerwick, J. Org.
Chem. 2012, 77, 4198-4208; e) V. Rukachaisirikul, A. Rodglin, Y.
Sukpondma, S. Phongpaichit, J. Buatong, J. Sakayaroj, J. Nat. Prod.
2012, 75, 853-858; f) L. V. White, B. D. Schwartz, M. G. Banwell, A. C.
A. Willis, J. Org. Chem. 2011, 76, 6250-6257; g) R. Jana, T. P.; Pathak,
M. S. Sigman, Chem. Rev. 2011, 111, 1417-1492; h) K. Nicolaou, P. G.
Bulger, D. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4442-4489; i) G. W.
Bemis, M. A. Murcko, J. Med. Chem. 1996, 39, 2887-2893.
[2]
[3]
[4]
a) A. Faulkner, T. van Leeuwen, B. L. Feringa, S. J. Wezenberg, J. Am.
Chem. Soc. 2016, 138, 13597-13603; b) R. Göstl, S. Hecht, Chem.-Eur.
J 2015, 21, 4422-4427; c) M. Irie, T. Fukaminato, K. Matsuda, S.
Kobatake, Chem. Rev. 2014, 114, 12174-12277; d) X. Chen, S. Wehle,
N. Kuzmanovic, B. Merget, U. Holzgrabe, B. König, C. A. Sotriffer, M.
Decker, ACS Chem. Neurosci. 2014, 5, 377-389; e) W. A. Velema, W.
Szymanski, B. L. Feringa, J. Am. Chem. Soc. 2014, 136, 2178-2191.
a) A. Grozavu, H. B. Hepburn, P. J. Smith, H. K. Potukuchi, P. J. Lindsay-
Scott, T. J. Donohoe, Nat. Chem. 2019, 11, 242-247; b) D. C. Blakemore,
L. Castr, I. Churcher, D. C. Rees, A. W. Thomas, D. M. Wilson, A. Wood,
Nat. Chem. 2018, 10, 383; c) V. K. Tiwari, G. Pawar, H. S. Jena, M.
Kapur, Chem. Commun. 2014, 50, 7322-7325; d) M. Baumann, I. R.
Baxendale, Beilstein J. Org. Chem. 2013, 9, 2265-2319; e) S. Källström,
R. Leino, Bioorg. Med. Chem. 2008, 16, 601-635.
[13]
M. J. Koh, T. T. Nguyen, H. Zhang, R. R. Schrock, A. H. Hoveyda,
Nature 2016, 531, 459-465.
[14] a) W. Lecroq, P. Bazille, F. Morlet-Savary, M. Breugst, J. Lalevée, A.-C.
Gaumont, S. Lakhdar, Org. Lett. 2018, 20, 4164-4167; b) L. Huang, M.
Rudolph, F. Rominger, A S. K. Hashmi. Angew. Chem. Int. Ed. 2016, 55,
4808-4813; c) I. Ghosh, T. Ghosh, J. I. Bardagi, B. König, Science 2014,
346, 725-728; d) Y. Cheng, X. Gu, P. Li, Org. Lett. 2013, 15, 2664-2667;
e) D. P. Hari, P. Schroll, B. König, J. Am. Chem. Soc. 2012, 134, 2958-
2961; f) J. Yu, L. Zhang, G. Yan, Adv. Syn. Catal. 2012, 354, 2625-262;
a) T. Adak, J. Schulmeister, M. C. Dietl, M. Rudolph, F. Rominger, A. S.
K. Hashmi, Eur. J. Org. Chem. 2019, 3867-3876; b) Y. Li, B. Zhao, K.
Dai, D.-H. Tu, B. Wang, Y.-Y. Wang, Z.-T. Liu, Z.-W. Liu, J. Lu,
Tetrahedron 2016, 72, 5684-5690; c) C. Cordovilla, C. Bartolomé, J. M.
Martínez-Ilarduya, P. Espinet, ACS Catal. 2015, 5, 3040-3053; d) D.-H.
7
This article is protected by copyright. All rights reserved.