3
8
1c
2a
I2 (5 mol%)
23
3i
a Full experimental procedures and characterization data in Supplementary data. b Determined using chiral shift NMR employing Pirkle’s alcohol.
54, 3094. (d) Beasley, B. O.; Clarkson, G. J.; Shipman, M.
Tetrahedron Lett. 2012, 53, 2951. (e) Stepan, A. F.; Karki, K.;
McDonald, W. S.; Dorff, P. H.; Dutra, J. K.; DiRico, K. J.; Won,
The chemistry can be extended to azetidin-3-ones. For
example, spirocycle 5 can be made in 65% yield from N-tosyl
azetidin-3-one (4) and tryptamine (2a) using TFA as the catalyst
(Scheme 1). Lower yields (44%) were observed using iodine (5
mol%) in MeCN. Using L-tryptophan ethyl ester (2c), compound
6 was produced in good yield without detectable racemization.
A.; Subramanyam, C.; Efremov, I. V.; O’Donnell, C. J.; Nolan, C.
E.; Becker, S. L.; Pustilnik, L. R., Sneed, B.; Sun, H.; Lu, Y.;
Robshaw, A. E.; Riddell, D.; O’Sullivan, T. J.; Sibley, E.; Capetta,
S.; Atchison, K.; Hallgren, A. J.; Miller, E.; Wood, A.; Obach, R.
S. J. Med. Chem. 2011, 54, 7772. (f) Vigo, D.; Stasi, L.; Gagliardi,
S. Tetrahedron Lett. 2011, 52, 565. (g) Burkhard, J. A.; Guérot,
C.; Knust, H.; Rogers-Evans, M.; Carreira, E. M. Org. Lett. 2010,
12, 1944. (h) Wuitschik, G.; Rogers-Evans, M.; Buckl, A.;
Bernasconi, M.; Märki, M.; Godel, T.; Fischer, H.; Wagner, B.;
Parilla, I.; Schuler, F.; Schneider, J.; Alker, A.; Schweizer, W. B.;
Müller, K.; Carreira, E. M. Angew. Chem. Int. Ed. 2008, 47, 4512.
(i) Wuitschik, G.; Rogers-Evans, M.; Müller, K.; Fischer, H.;
Wagner, B.; Schuler, F.; Polonchuk, L.; Carreira, E. M. Angew.
Chem. Int. Ed. 2006, 45, 7736.
3. Kam T.-S.; Sim, K.-M. Phytochemistry 1998, 47, 145.
4. Rabindran, S. K.; Ross, D. D.; Doyle, L. A.; Yang, W.;
Greenberger, L. M. Cancer Res. 2000, 60, 47.
5. (a) Daugan, A.; Grondin, P.; Ruault, C.; Le Monnier de Gouville,
A.-C.; Coste, H.; Kirilovsky, J.; Hyafil, F.; Labaudinière, R. J.
Med. Chem. 2003, 46, 4525; (b) Daugan, A.; Grondin, P.; Ruault,
C.; Le Monnier de Gouville, A.-C.; Coste, H.; Linget, J.-M.;
Kirilovsky, J.; Hyafil, F.; Labaudinière, R. J. Med. Chem. 2003,
46, 4533.
Scheme 1
6. For reviews, see: Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95,
1797. (b) Stöckigt, J.; Antonchick, A. P.; Wu, F. R.; Waldmann,
H. Angew. Chem. Int. Ed., 2011, 50, 8538.
7. (a) Lingam, Y.; Rao, D. M.; Bhowmik, D. R.; Santu, P. S.; Rao, K.
R.; Islam, A. Tetrahedron Lett., 2007, 48, 7243. (b) Prajapati, D.;
Gohain, M. Synth. Commun., 2008, 38, 4426.
8. See, for example: Soerens, D.; Sandrin, J.; Ungemach, F.; Mokry,
P.; Wu, G. S.; Yamanaka, E.; Hutchins, L.; DiPierro, M.; Cook, J.
M. J. Org. Chem. 1979, 44, 535.
9. Pirkle, W. H.; Hoover, D. J. Topics Stereochem. 1982, 13, 263.
10. Crystallographic data (excluding structure factors) for 3e (CCDC
961012) have been deposited with the Cambridge Crystallographic
Data Centre. Copies of the data can be obtained, free of charge, on
application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK.
11. The structural assignment for 3e deduced by X-ray (Figure 1) was
also confirmed by NOE experiments. Specifically, reciprocal
NOE enhancements were seen between the indole NH and two
oxetane ring hydrogens attached to different ring carbons. These
and other relevant NOEs were also seen in 3g, 3h and 3i. These
observations are consistent with the oxetane substituent being anti
to the new C–C bond in all cases.
In conclusion, we have developed simple methodology for the
synthesis of oxetane- and azetidine-containing tetrahydro--
carbolines through application of Pictet-Spengler cyclizations.
Iodine catalysis proved effective in most cases and the reactions
exhibited high diastereofacial selectivity. In the course of this
work, we have unearthed what we believe to be the first
examples of uncatalysed Pictet-Spengler reactions involving
simple ketones. Work to explore the benefits of oxetane
introduction into THBCs and other drug-like scaffolds is
continuing in our laboratory.
Acknowledgements
This work was supported by the University of Warwick and
the Engineering and Physical Sciences Research Council
(EPSRC). N-Tosyl azetidin-3-one was kindly provided by
Nicola Powell. The Oxford Diffraction Gemini XRD system was
obtained, through the Science City Advanced Materials project:
Creating and Characterizing Next Generation Advanced
Materials, with support from Advantage West Midlands.
Supplementary Materials
Supplementary material associated with this article can be
found, in the online version, at ******
References and notes
1. For reviews, see: (a) Wuitschik, G.; Carreira, E. M.; Wagner, B.;
Fischer, H.; Parrilla, I.; Schuler, F.; Rogers-Evans, M.; Müller, K.
J. Med. Chem. 2010, 53, 3227. (b) Burkhard, J. A.; Wuitschik, G.;
Rogers-Evans, M.; Müller, K.; Carreira, E. M. Angew. Chem. Int.
Ed. 2010, 49, 9052.
2. (a) Burkhard, J. A.; Wuitschik, G.; Plancher, J.-M.; Rogers-Evans,
M.; Carreira, E. M. Org. Lett. 2013, 15, 4312. (b) Fujishima, T.;
Nozaki, T.; Suenga, T. Bioorg. Med. Chem. 2013, 21, 5209. (c)
Nassoy, A.-C.; Raubo, P.; Harrity, J. P. A. Tetrahedron Lett. 2013,