D
H. Inani et al.
Letter
Synlett
Ar
H
O
N
O
N
OH
O
:
H
N
OH
N
+ H2O
L-proline
H
Ar
O
Ar
3
2
HN
[4b]
O
NH
[4a]
[4c]
COOH
N
H
O
Ar
1
' } ' has been used to represent the rest of a proline unit
Scheme 2 Proposed mechanistic pathway highlighting the involvement of proline in the proton-transfer step of the Baylis–Hillman reaction in the
absence of a co-catalyst
ments coupled with parallel computational studies need to
be taken up in this regard to gain a deeper insight into the
mechanism and substantiate our hypothesis.
(3) (a) Bharadwaj, K. C. RSC Adv. 2015, 5, 75923. (b) Xie, P.; Huang,
Y. Org. Biomol. Chem. 2015, 13, 8578. (c) Bhowmik, S.; Batra, S.
Curr. Org. Chem. 2014, 18, 3078. (d) Liu, T.-Y.; Xie, M.; Chen, Y.-C.
Chem. Soc. Rev. 2012, 41, 4101. (e) Rios, R. Catal. Sci. Technol.
2012, 2, 267. (f) Ma, G.-N.; Jiang, J.-J.; Shi, M.; Wei, Y. Chem.
Commun. 2009, 5496.
(4) (a) Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659. (b) Mansilla, J.;
Saa, J. M. Molecules 2010, 15, 709. (c) Masson, G.; Housseman,
C.; Zhu, J. Angew. Chem. Int. Ed. 2007, 46, 4614. (d) Shi, M.; Jiang,
J.-K. Tetrahedron: Asymmetry 2002, 13, 1941.
(5) Shi, M.; Jiang, J.-K.; Li, C.-Q. Tetrahedron Lett. 2002, 43, 127.
(6) Guo, P.-F.; Wei, Q.-Y.; Jiang, H.; Xie, P.-F. Res. Chem. Intermed.
2012, 38, 639.
(7) Gruttadauria, M.; Giacalone, F.; Lo Meo, P.; Marculescu, A. M.;
Riela, S.; Noto, R. Eur. J. Org. Chem. 2008, 1589.
(8) A proline-catalysed enantioselective intramolecular Baylis–
Hillman reaction in the absence of a co-catalyst has been
reported and studied, see: (a) Chen, S.-H.; Hong, B.-C.; Su, C.-F.;
Sarshar, S. Tetrahedron Lett. 2005, 46, 8899. (b) Duarte, F. J. S.;
Cabrita, E. J.; Frenking, G.; Santos, A. G. Chem. Eur. J. 2009, 15,
1734.
(9) (a) Imbriglio, J. E.; Vasbinder, M. M.; Miller, S. J. Org. Lett. 2003,
5, 3741. (b) Tang, H.; Zhao, G.; Zhou, Z.; Zhou, Q.; Tang, C. Tetra-
hedron Lett. 2006, 47, 5717. (c) Tang, H.; Gao, P.; Zhao, G.; Zhou,
Z.; He, L.; Tang, C. Catal. Commun. 2007, 8, 1811. (d) Tang, H.;
Zhao, G.; Zhou, Z.; Gao, P.; He, L.; Tang, C. Eur. J. Org. Chem. 2008,
126.
In summary, we have reported a proline-mediated Bay-
lis–Hillman reaction of methyl vinyl ketone with aromatic
aldehydes under solvent-free conditions without the use of
any co-catalyst. To our knowledge, this is the first report of
an intermolecular Baylis–Hillman reaction that works satis-
factorily using proline in the absence of any co-catalyst. The
solvent-free conditions offer an added advantage from a
green perspective for this atom-economic C–C bond-form-
ing reaction. The role of proline in the proton-transfer step
needs to be further investigated to establish the trifunc-
tional role of proline in this reaction. Looking ahead, new
proline-based catalysts may be designed to carry out the
reaction even more efficiently under milder conditions,
while also expanding the scope to include other substrates.
In this regard, thoughtfully constructed dipeptides could
turn out to be more efficient catalysts and could potentially
offer mechanistic clues on this increasingly intriguing reac-
tion. Efforts in this direction are in progress in our group
and the results will be published in due course.
(10) Davies, H. J.; Ruda, A. M.; Tomkinson, N. C. O. Tetrahedron Lett.
2007, 48, 1461.
Acknowledgment
H.I. thanks UGC for a fellowship. S.E. thanks DST, India for research
funding. The authors thank the Central University of Rajasthan for
support.
(11) Luo, S.; Wang, P. G.; Cheng, J.-P. J. Org. Chem. 2004, 69, 555.
(12) Luo, S.; Mi, X.; Wang, P. G.; Cheng, J.-P. Tetrahedron Lett. 2004,
45, 5171.
(13) Determined by HPLC analysis on a chiral stationary phase: Chi-
ralcel OD-H column; hexane–i-PrOH, 95:5; 1 mL/min; 23.09
and 24.74 min.
References and Notes
(14) Cai, J.; Zhou, Z.; Zhao, G.; Tang, C. Org. Lett. 2002, 4, 4723.
(15) (a) Roy, D.; Patel, C.; Sunoj, R. B. J. Org. Chem. 2009, 74, 6936.
(b) Roy, D.; Sunoj, R. B. Chem. Eur. J. 2008, 14, 10530.
(16) Although a similar reaction at 40 °C gave an identical yield,
60 °C was chosen for the reactions with other aldehydes to
ensure better yields with less reactive substrates.
(17) Proline-Catalysed Baylis–Hillman Reaction; Typical Proce-
dure: Methyl vinyl ketone (2; 5.0 mmol) and H2O (25 μL) were
added to L-proline (0.5 mmol) in a 5-mL vial and the solution
was stirred for 15 min at room temperature. p-Nitrobenzalde-
hyde (1a; 1.0 mmol) was then added and the reaction mixture
was stirred for 8 h and heated at 60 °C. Direct silica gel column
chromatographic purification of the reaction mixture (EtOAc–
petroleum ether, 1:4) afforded the pure product 3a (201 mg,
(1) (a) Baylis, A. B.; Hillman, M. E. D. Ger. Offen. 1972, 2, 155, 113;
Chem. Abstr. 1972, 77, 34174q; Hillman M. E. D., Baylis, A B. US
Patent 1973, 3,743,669. (b) Morita, K.; Suzuki, Z.; Hirose, H. Bull.
Chem. Soc. Jpn. 1968, 41, 2815.
(2) For reviews and books, see: (a) Basavaiah, D.; Veeraraghavaiah,
G. Chem. Soc. Rev. 2012, 41, 68. (b) Basavaiah, D.; Reddy, B. S.;
Badsara, S. S. Chem. Rev. 2010, 110, 5447. (c) Basavaiah, D.;
Venkateswara Rao, K.; Jannapu Reddy, R. Chem. Soc. Rev. 2007,
36, 1581. (d) Basavaiah, D.; Jaganmohan Rao, A.; Satyanarayana,
T. Chem. Rev. 2003, 103, 811. (e) The Chemistry of the Morita–
Baylis–Hillman Reaction; Shi, M.; Wang, F.; Zhao, M.-X.; Wei, Y.,
Eds.; RSC Publishing: London, 2011.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–E