LETTER
Isoquinoline N-Oxide Synthesis
2435
References
(1) For selected examples, see: (a) Wang, L.; Huang, J.; Peng,
S.; Liu, H.; Jiang, X.; Wang, J. Angew. Chem. Int. Ed. 2013,
52, 1768. (b) Gandeepan, P.; Cheng, C.-H. Org. Lett. 2013,
15, 2084. (c) Wang, Z.-Q.; Liang, Y.; Lei, Y.; Zhou, M.-B.;
Li, J.-H. Chem. Commun. 2009, 5242. (d) Elakkar, E.;
Floris, B.; Galloni, P.; Tagliatesta, P. Eur. J. Org. Chem.
2005, 889.
(2) For selected examples, see: (a) Zhu, C.; Falck, J. R. Org.
Lett. 2011, 13, 1214. (b) McAtee, D. M. S.; Dasgupta, S.;
Watson, M. P. Org. Lett. 2011, 13, 3490. (c) Li, D. D.; Yuan,
T. T.; Wang, G. W. Chem. Commun. 2011, 47, 12789.
(d) Wang, F.; Song, G. Y.; Li, X. W. Org. Lett. 2010, 12,
5430.
General Procedure
A solution of oxime (0.3 mmol), alkyne (0.45 mmol), Pd(OAc)2 (10
mol%), ZnBr2 (0.3 mmol), TFA (0.06 mmol) in PhCl–dioxane (2:
1, 1.5 mL) was heated at 120 °C under air. The reaction was moni-
tored by TLC. After the reaction was complete, the reaction mixture
was cooled down to r.t. The mixture was washed with sat. aq
NaHCO3 (15 mL) to neutralise acid. The aqueous layers were ex-
tracted with EtOAc (3 × 15 mL). The combined organic layer was
dried over anhydrous Na2SO4. The solvent was removed under re-
duced pressure to provide the crude product. The crude product was
purified by flash column chromatography on silica gel.
Selected Examples
(3) For selected examples, see: (a) Ackermann, L.; Lygin, A. V.
Org. Lett. 2012, 14, 764. (b) Porcheddu, A.; Mura, M. G.;
Luca, L. D.; Pizzetti, M.; Taddei, M. Org. Lett. 2012, 14,
6112. (c) Huestis, M. P.; Chan, L.; Stuart, D. R.; Fagnou, K.
Angew. Chem. Int. Ed. 2011, 123, 1374. (d) Chen, J. L.;
Pang, Q. Y.; Sun, Y. B.; Li, X. W. J. Org. Chem. 2011, 76,
3523. (e) Wei, X. H.; Zhao, M.; Du, Z. Y.; Li, X. W. Org.
Lett. 2011, 13, 4636. (f) Zhou, F.; Han, X. L.; Lu, X. Y.
Tetrahedron Lett. 2011, 52, 4681. (g) Chen, J. L.; Song, G.
Y.; Pan, C. L.; Li, X. W. Org. Lett. 2010, 12, 5426.
(h) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am.
Chem. Soc. 2010, 132, 18326. (i) Shi, Z.; Zhang, C.; Li, S.;
Pan, D.; Ding, S.; Cui, Y.; Jiao, N. Angew. Chem. Int. Ed.
2009, 48, 4572.
(4) For selected examples, see: (a) Deponti, M.; Kozhushkov, S.
I.; Yufit, D. S.; Ackermann, L. Org. Biomol. Chem. 2013,
11, 142. (b) Lu, S.; Lin, Y.; Zhong, H.; Zhao, K.; Huang, J.
Tetrahedron Lett. 2013, 54, 2001. (c) Zhang, N.; Li, B.;
Zhong, H.; Huang, J. Org. Biomol. Chem. 2012, 10, 9429.
(d) Zhong, H.; Yang, D.; Wang, S.; Huang, J. Chem.
Commun. 2012, 48, 3236. (e) Shiota, H.; Ano, Y.; Aihara,
Y.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2011, 133,
14952. (f) Ackermann, L.; Lygin, A. V.; Hofmann, N.
Angew. Chem. Int. Ed. 2011, 50, 6379. (g) Song, G. Y.;
Chen, D.; Pan, C. L.; Crabtree, R. H.; Li, X. W. J. Org.
Chem. 2010, 75, 7487. (h) Guimond, N.; Gouliaras, C.;
Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908. (i) Mochida,
S.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. Chem. Lett.
2010, 39, 744.
1,6-Dimethyl-3,4-diphenylisoquinoline 2-Oxide (3b)
Following the general procedure, oxime 1b (0.3 mmol, 45 mg), di-
phenylethyne (80 mg, 0.45 mmol), Pd(OAc)2 (6.7 mg, 10 mol%),
ZnBr2 (63 mg, 0.3 mmol), and TFA (6.8 mg, 0.06 mmol) in PhCl–
dioxane (2:1; 1.5 mL) was heated at 120 °C for 5 h to give the de-
sired isoquinoline oxide 3b (75 mg, 77%) as a pale yellow solid; mp
245–247 °C. 1H NMR (600 MHz, CDCl3): δ = 7.94 (d, J = 8.5 Hz,
1 H), 7.46 (d, J = 8.5 Hz, 1 H), 7.28–7.17 (m, 9 H), 7.12 (d, J = 6.7
Hz, 2 H), 2.98 (s, 3 H), 2.39 (s, 3 H). 13C NMR (151 MHz, CDCl3):
δ = 145.7, 145.4, 138.8, 135.4, 133.9, 133.3, 130.8, 130.7, 130.6,
129.5, 128.1, 127.9, 127.7, 127.6, 126.4, 125.8, 124.1, 21.9, 13.6.
ESI-HRMS: m/z calcd for C23H19NO [M + H]: 326.1545; found:
325.1546.
6-Chloro-1-methyl-3,4-diphenylisoquinoline 2-Oxide (3d)
Following the general procedure, oxime 1d (0.3 mmol, 51 mg), di-
phenylethyne (80 mg, 0.45 mmol), Pd(OAc)2 (6.7 mg, 10 mol%),
ZnBr2 (62.5 mg, 0.3 mmol), and TFA (6.84 mg, 0.06 mmol) in
PhCl–dioxane (2:1, 1.5 mL) was heated at 120 °C for 8 h to give the
desired isoquinoline oxide 3d (47 mg, 45%) as a pale yellow solid;
mp 206–208 °C. 1H NMR (600 MHz, CDCl3): δ = 7.96 (d, J = 9.0
Hz, 1 H), 7.56 (d, J = 9.0 Hz, 1 H), 7.42 (s, 1 H), 7.29–7.26 (m, 3
H), 7.24–7.18 (m, 5 H), 7.11 (d, J = 6.0 Hz, 2 H), 2.96 (s, 3 H). 13
C
NMR (151 MHz, CDCl3): δ = 146.9, 144.9, 134.7, 134.3, 133.6,
132.8, 130.5, 130.4, 129.7, 129.5, 128.3, 128.1, 128.0, 127.8, 126.7,
125.7, 125.6, 13.7. ESI-HRMS: m/z calcd for C22H1635ClNO [M +
H]: 346.0999; found: 346.1001.
1-Phenyl-3,4-dipropylisoquinoline 2-Oxide (3j)
Following the general procedure, oxime 1i (0.3 mmol, 59 mg), di-
propylacetylene (50 mg, 0.45 mmol), Pd(OAc)2 (6.7 mg, 10 mol%),
and ZnBr2 (63 mg, 0.3 mmol) in PhCl–dioxane (2:1, 1.5 mL) was
heated at 120 °C for 5 h to give the desired isoquinoline oxide 3j (54
(5) For selected examples, see: (a) Shi, X. Y.; Li, C. J. Adv.
Synth. Catal. 2012, 354, 2933. (b) Ackermann, L.; Pospech,
J. Org. Lett. 2011, 13, 4153. (c) Ueura, K.; Satoh, T.; Miura,
M. J. Org. Chem. 2007, 72, 5362.
1
mg, 59%) as a pale yellow solid; mp 172–174 °C. H NMR (600
MHz, CDCl3): δ = 8.15 (d, J = 8.0 Hz, 1 H), 7.97 (t, J = 8.0 Hz, 1
H), 7.79–7.72 (m, 3 H), 7.66 (t, J = 7.5 Hz, 1 H), 7.64–7.60 (m, 3
H), 3.47–3.36 (m, 2 H), 3.22–3.12 (m, 2 H), 1.89–1.888 (m, 2 H),
1.80–1.79 (m, 2 H), 1.22–1.17 (m, 3 H), 1.15–1.10 (m, 3 H). 13C
NMR (151 MHz, CDCl3): δ = 147.0, 136.2, 135.7, 134.5, 130.8,
130.5, 130.3, 129.6, 128.6, 128.2, 127.1, 124.0, 100.0, 31.0, 30.9,
24.0, 22.1, 14.7, 14.4. ESI-HRMS: m/z calcd for C21H23NO [M +
H]: 306.1858; found: 306.1861.
(6) For selected examples, see: (a) Kuram, M. R.;
Bhanuchandra, M.; Sahoo, A. K. Angew. Chem. Int. Ed.
2013, 52, 4607. (b) Lee, D. H.; Kwon, K. H.; Yi, C. S. J. Am.
Chem. Soc. 2012, 134, 7325. (c) Kundu, D.; Samim, M.;
Majee, A.; Hajra, A. Chem. Asian J. 2011, 6, 406.
(7) For selected examples, see: (a) Deponti, M.; Kozhushkov, S.
I.; Yufit, D. S.; Ackermann, L. Org. Biomol. Chem. 2013,
11, 142. (b) Ackermann, L.; Pospech, J.; Graczyk, K.;
Rauch, K. Org. Lett. 2012, 14, 930. (c) Chinnagolla, R. K.;
Jeganmohan, M. Chem. Commun. 2012, 48, 2030.
(d) Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007, 72,
5362. (e) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9,
1470.
(8) (a) Yu, W. Y.; Sit, W. N.; Zhou, Z.; Chan, A. S.-C. Org. Lett.
2009, 11, 3174. (b) Thirunavukkarasu, V. S.; Parthasarathy,
K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2008, 120, 9604.
(9) (a) Zhang, X. P.; Chen, D.; Zhao, M.; Zhao, J.; Jia, A. Q.; Li,
X. W. Adv. Synth. Catal. 2011, 353, 719. (b) Parthasarathy,
K.; Cheng, C. H. J. Org. Chem. 2009, 74, 9359.
Acknowledgment
The financial support from the National Natural Science Foundati-
on of China (Grant No. 21342001), Tianjin Natural Science Foun-
dation (Grant No. 13JCQNJC04800), and the Innovation
Foundation of Tianjin University (2013XJ-0005) are gratefully ack-
nowledged.
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 2431–2436