Mahesh Vishe et al.
FULL PAPERS
W. Zeghida, M. Austeri, L. Guꢀnꢀe, J. Lacour, Angew.
Chem. 2012, 124, 5949–5953; Angew. Chem. Int. Ed.
2012, 51, 5847–5851; b) D. Rix, R. Ballesteros-Garrido,
W. Zeghida, C. Besnard, J. Lacour, Angew. Chem.
2011, 123, 7446–7449; Angew. Chem. Int. Ed. 2011, 50,
7308–7311.
General Synthesis of Macrocycles 3a to 3q
To a flame-dried Schlenk tube was added Rh2ACTHNUGTRNE(UNG Oct)4 (7.8 mg,
10.0 mmol, 1 mol%) under an N2 atmosphere. Then, the cor-
responding ether 1 was added neat (1.0 mL) or as a solid
(6.0 mmol, 6 equivalents) along with a solvent (1 mL, tolu-
ene or CH2Cl2). The resulting solution was heated to 608C,
to which was then added dropwise methyl diazoacetoatetate
2 (142 mg, 1.0 mmol). Continuous heating and stirring were
applied at 608C for 1 hour. The reaction was then stopped
by removing the solvent under vacuum. The crude reaction
mixture was analyzed by NMR spectroscopy and then sub-
mitted to a chromatographic purification (column filled with
neutral alumina or silica gel).
[5] For THF derivatives, the process is of course a [3+5+
3+5] condensation reaction.
[6] a) S. Shirakawa, K. Maruoka, Angew. Chem. Int. Ed.
2013, 52, 4312–4348; b) B. Zheng, F. Wang, S. Dong, F.
Huang, Chem. Soc. Rev. 2012, 41, 1621–1636; c) M.
Kaller, S. Laschat, in: Liquid Crystals, Vol. 318, (Ed.:
C. Tschierske), Springer, Berlin, Heidelberg, 2012,
pp 109–192; d) F. A. Christy, P. S. Shrivastav, Crit. Rev.
Anal. Chem. 2011, 41, 236–269; e) G. W. Gokel, M. M.
Daschbach, Coord. Chem. Rev. 2008, 252, 886–902;
f) G. W. Gokel, W. M. Leevy, M. E. Weber, Chem. Rev.
2004, 104, 2723–2750.
Acknowledgements
[7] Rh2ACHTUNGTRENNUG(Oct)4 was selected over Rh2HCATUNGTERNN(UGN OAc)4 because of its
We thank the University of Geneva, the Swiss National Sci-
ence Foundation, the NCCR Chemical Biology, the COST
Action CM0802 and the State Secretariat for Education and
Science for financial support. We acknowledge the contribu-
tions of the Sciences Mass Spectrometry (SMS) platform at
the Faculty of Sciences, University of Geneva.
good solubility in ethers or in organic co-solvents.
[8] In all instances, molecular nitrogen was immediately re-
leased upon the addition of the diazo reagent to the
mixtures of cyclic ethers and Rh2ACTHNUTRGNEN(UG Oct)4.
[9] F. R. Fintelman Dias, Synlett 2013, 397–398.
[10] For the exact reaction of 2 and unsubstituted THP,
please see ref.[3]
[11] In these reactions and the next, modest yields are ob-
tained due to the competing formation of byproducts
of carbenoid dimerizations and reactions with diazo re-
actants generating tetrasubtituted olefins and hydra-
zine-1,2-diylidene adducts. 9-Membered ring products,
which would be formed by an intramolecular attack,
are not generated as the 5-endo-tet reaction is highly
disfavoured for stereochemical reasons. See: R. Balles-
teros-Garrido, D. Rix, C. Besnard, J. Lacour, Chem.
Eur. J. 2012, 18, 6626–6631.
[12] It is the case for compounds rac-3a, rac-3b and meso-
3f.
[13] In the dimerization of ylide intermediates C (see
Scheme 8), the presence of electron-withdrawing
groups is favourable for activating the electrophilic
oxonium moieties towards the O-enolate nucleophilic
attacks.
References
[1] a) G. K. Murphy, C. Stewart, F. G. West, Tetrahedron
2013, 69, 2667–2686; b) H. M. L. Davies, D. Morton,
Chem. Soc. Rev. 2011, 40, 1857–1869; c) Y. Zhang, J.
Wang, Coord. Chem. Rev. 2010, 254, 941–953; d) M. P.
Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev.
2010, 110, 704–724; e) C. N. Slattery, A. Ford, A. R.
Maguire, Tetrahedron 2010, 66, 6681–6705; f) A.
Padwa, Chem. Soc. Rev. 2009, 38, 3072–3081;
g) H. M. L. Davies, J. R. Denton, Chem. Soc. Rev. 2009,
38, 3061–3071; h) A. F. Noels, Angew. Chem. 2007, 119,
1228–1230; Angew. Chem. Int. Ed. 2007, 46, 1208–1210;
i) M. M. Diaz-Requejo, T. R. Belderrain, M. C. Nicasio,
P. J. Perez, Dalton Trans. 2006, 5559–5566; j) G. Maas,
Chem. Soc. Rev. 2004, 33, 183–190; k) H. Nishiyama,
Top. Organomet. Chem. 2004, 11, 81–92; l) M. P. Doyle,
D. C. Forbes, Chem. Rev. 1998, 98, 911–936; m) M. P.
Doyle, M. A. McKervey, T. Ye, Modern catalytic meth-
ods for organic synthesis with diazo compounds : from
cyclopropanes to ylides, Wiley, New York, 1998.
[2] a) D. M. Hodgson, D. Angrish, Chem. Eur. J. 2007, 13,
3470–3479; b) T. M. Weathers, Y. Wang, M. P. Doyle, J.
Org. Chem. 2006, 71, 8183–8189; c) M. P. Doyle, C. S.
Peterson, M. N. Protopopova, A. B. Marnett, D. L.
Parker, D. G. Ene, V. Lynch, J. Am. Chem. Soc. 1997,
119, 8826–8837; d) M. P. Doyle, C. S. Peterson, Tetrahe-
dron Lett. 1997, 38, 5265–5268; e) M. P. Doyle, M. N.
Protopopova, C. D. Poulter, D. H. Rogers, J. Am.
Chem. Soc. 1995, 117, 7281–7282.
[14] The epoxide precursor of rac-1k, i.e., 3,6-dioxabicyclo-
AHCTUNGTREG[NNUN 3.1.0]hexane, cannot be used in this reaction as sub-
strate since a rapid deoxygenation reaction occurs to
generate 2,5-dihydrofuran. This type of reactivity with
acceptor/acceptor diazo reagents under Rh(II) catalysis
is well characterized, see for instance: M. G. Martin, B.
Ganem, Tetrahedron Lett. 1984, 25, 251–254.
[15] J. Skarzewski, A. Gupta, Tetrahedron: Asymmetry
1997, 8, 1861–1867.
[16] a) K. Takeda, T. Oohara, M. Anada, H. Nambu, S. Ha-
shimoto, Angew. Chem. 2010, 122, 7133–7137; Angew.
Chem. Int. Ed. 2010, 49, 6979–6983; b) N. Shimada, M.
Anada, S. Nakamura, H. Nambu, H. Tsutsui, S. Hashi-
moto, Org. Lett. 2008, 10, 3603–3606; c) Y. Natori, M.
Anada, S. Nakamura, H. Nambu, S. Hashimoto, Het-
erocycles 2006, 70, 635–647; d) D. M. Hodgson, A. H.
Labande, F. Y. T. M. Pierard, M. ꢅ. Expꢆsito Castro, J.
Org. Chem. 2003, 68, 6153–6159; e) H. Tsutsui, Y. Ya-
maguchi, S. Kitagaki, S. Nakamura, M. Anada, S. Ha-
[3] W. Zeghida, C. Besnard, J. Lacour, Angew. Chem.
2010, 122, 7411–7414; Angew. Chem. Int. Ed. 2010, 49,
7253–7256.
[4] For recent articles from our group on the reactivity of
a-diazo-b-ketoesters, see: a) C. Tortoreto, T. Achard,
3168
ꢂ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2013, 355, 3161 – 3169