Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C7CC03860G
COMMUNICATION
Journal Name
Commun., 2016, 52, 6545-6548; (t) Y. H. Li, X. J. Cui, K. W.
Dong, K. Junge, M. Beller, ACS Catal., 2017, , 1077-1086; (u)
Z. Z. Yang, B. Yu, H. Y. Zhang, Y. F. Zhao, G. P. Ji and Z. M. Liu,
RSC Adv., 2015, , 19613-19619; (v) P. Ju, J. Chen, A. Chen, L.
Chen and Y. Yu, ACS Sustainable Chem. Eng., 2017, , 2516-
2528; (w) C. D. N. Gomes, O. Jacquet, C. Villiers, P. Thuery, M.
Ephritikhine and T. Cantat, Angew. Chem. Int. Ed., 2012, 51,
187-190; (x) X. Frogneux, O. Jacquet and T. Cantat, Catal. Sci.
Technol., 2014, 4, 1529-1533; (y) F. Liu, X. Li, Chang Q, H. Fu
and L. He, Angew. Chem. Int. Ed., 2017, 56,7425-7429; z) H.
Niu, L. Lu, R. Shi, C. Chiang, A. W. Lei, Chem. Commun., 2017,
53, 1148-1151.
N-methylation is highly catalyst dependent, which makes the
reaction reported here affording the formamides in good to
excellent yield. The reported reactions do not require an inert
atmosphere and is applicable to a wide range of substrates. It
provides an easy access to different formamides. Some catalytic
systems using cheap catalysts (e.g. Cs2CO3, K2CO3, Cu, Zn) have been
reported.2m,p,q,u Most of these examples adopted silane as
7
5
5
reductant, which has
a low atomic economy. Besides, the
separation of the N-formylation product and silane by-product is
not easy because they have similar solubility. On the contrary, the
BH3NH3 by-product is water soluble and catalyst-free process
further simplify the separation of product.
3
(a) X. Zhang, L. Kam, R. Trerise and T. J. Williams, Acc. Chem.
Res., 2017, 50, 86-95; (b) S. Kim, W. Han, T. Kim, T. Kim, S.
Thanks are given to Prof. Guy Bertrand for useful suggestion and
discussion. This work was supported by National Natural Science
Foundation of China (No.21376115, and 21676134) and the
Fundamental Research Funds for the Central Universities (0205
14380106).
W. Nam, M. Mitoraj, L. Piekos, A. Michalak, S. Hwang, and S.
O. Kang, J. Am. Chem. Soc., 2010, 132, 9954-9955; (c) M. E.
Bluhu, M. G. Bradley, R. Butterick, U. Kusari and L. G.
Sneddon, J. Am. Chem. Soc., 2006, 128, 7748-7749; (d) Z. Lu,
L. Schweighauser, H. Hausmann and H. A. Wegner, Angew.
Chem. Int. Ed., 2015, 54, 15556-15559; (e) J. A. Buss, G. A.
Edouard, C. Cheng, J. Shi and T. Agapie, J. Am. Chem. Soc.,
2014, 136, 11272-11275.
X. Hu, M. Soleolhavoup, M. Melaimi, J. Chu and G. Bertrand,
Angew. Chem. Int. Ed., 2015, 54, 6008-6011.
(a) G. Zeng, S. Maeda, T. Taketsugu and S. Sakaki,J. Am.
Chem. Soc., 2016, 138, 13481-13484; (b) G. Menard and D.
W. Stephan, J. Am. Chem. Soc., 2010, 132, 1796-1797; (c) L.
Notes and references
4
5
1
(a) J. Y. Wang, L. Huang, R. Y. Yang, Z. Zhang, J. W. Wu, Y. S.
Gao, Q. Wang, D. O'Hare and Z. Y. Zhong, Energy Environ.
Sci., 2014, 7, 3478-3518; (b) S. Ma, G. Chen, M. Guo, Z. Li, T.
Han and S. Zhu, Renew. Sust. Energ. Rev., 2014, 37, 687-697;
(c) Z. Yang, L. He, J. Gao, A. Liu and B. Yu, Energy Environ.
Roy, P. M. Zimmerman and A. Paul, Chem. Eur. J., 2011, 17
435-439.
,
Sci., 2012,
114, 1413-1492; (e) J. Klankermayer, S. Wesselbaum, K.
Beydoun and W. Leitner, Angew. Chem. Int. Ed., 2016, 55
5, 6602-6639; (d) M. Pera-Titus, Chem. Rev., 2014,
6
7
(a) T. X. Zhao, X. B. Hu, D. S. Wu, R. Li, G. Q. Yang and Y. T.
Wu, ChemSusChem, 2017, 10, 2046-2052; (b) K. Huang, X. M.
Zhang, X. B. Hu and Y. T. Wu, AIChE J., 2016, 62, 4480-4490;
(c) X. Zhang, K. Huang, S. Xia, Y. Chen, Y. Wu and X. Hu,
Chem. Eng. J., 2015, 274, 30-38 (d) X. B. Hu, Y. X. Li, K.
,
7296-7343; (f) A. W. Kleij, M. North and A. Urakawa,
ChemSusChem, 2017, 10, 1036-1038; (g) W. H. Wang, Y.
Himeda, J. T. muckerman, G. F. Manbeck and E. Fujita,
Chem. Rev., 115, 12936-12973; (h) Q. Liu, L. Wu, R. Jackstell
Huang, S. Ma, H. Yu and Y. T. Wu, Green Chem., 2012, 14
1440-1446.
,
and M. Beller, Nature Comm., 2015,
Grube, S. Schiebahn and D. Stolten, Energy Environ. Sci.,
2015, , 3283-3297, (j) Q. Song, Z. Zhou and L. He, Green.
6, 5933, (i) A. Otto, T.
(a) S. Das, D. Addis, S. Zhou, K. Junge and M. Beller, J. Am.
Chem. Soc., 2010, 132, 1770-1771; (b) O. Jacquet, X.
Frogneux, C. D. N. Gomes and T. Cantat, Chem. Sci., 2013, 4,
2127-2131; (c) C. Qiao, X. Liu, X. Liu and L. He, Org. Lett.,
2017, 19, 1490-1493; (d) A. Tlili, E. Blondiaux, X. Forgneux
and T. Cantat, Green Chem., 2015, 17, 157-168.
(a) R. B. Sonawane, N. K. Rasal and S. V. Jagtap, Org. Lett.
2017, 19, 2078-2081; (b) Y. Wang, F. Wang, C. Zhang, J.
Zhang, M. Li and J. Xu, Chem. Commun., 2014, 50, 2438-
2441.
8
Chem., 2017, DOI: 10.1039/C7GC00199A.c
(a) P. Daw, S. Chakraborty, G. Leitus, Y. Diskin-Posner, Y. Ben-
2
David and D. Milstein, ACS Catal., 2017,
B. Saptal and B. M. Bhanage, ChemSusChem, 2016,
7
, 2500-2504; (b) V.
, 1980-
9
1985; (c) O. Santoro, F. Lazreg, Y. Minenkov, L. Cavallob and
C. S. J. Cazin, Dalton Trans., 2015, 44, 18138-18144; (d) N. M.
Rezayee, C. A. Huff and M. S. Sanford, J. Am. Chem. Soc.,
2015, 137, 1028-1031; (e) H. Liu, Q. Mei, Q. Xu, J. Song, H.
Liu and B. X. Han, Green Chem., 2017, 19, 196-201; (f) J.
Song, B. Zhou, H. Liu, C. Xie, Q. Meng, Z. Zhang and B. X. Han;
Green Chem., 2016, 18, 3956-3961; (g) L. Hao, Y. Zhao, B. Yu,
Z. Yang, H. Zhang, B. X. Han, X. Gao and Z. Liu, ACS Catal.,
8
9
F. H. Stephens, R. T. Baker, M. H. Matus, D. J. Grant and D. A.
Dixon, Angew. Chem. Int. Ed. 2007, 46, 746-749.
10 (a) A. Bruneau-Voisine, D. Wang, V. Dorcet, T. Roisnel, C.
Darcel and J. Sortais, J. Catal., 2017, 347, 57-62; (b) N.
Ortega, C. Richter and F Glorius, Org. Lett., 2013, 15, 1776-
1779; (c) L. Zhu, L. Wang, B. Li, W. Li and B. Fu, Catal. Sci.
2015,
Ferandez-Alvarez and L. A. Oro, ChemCatChem, 2015,
5, 4989-4993; (h) A. Juli, V. Polo, E. A. Jaseer, F. J.
7,
3895-3902; (i) T. V. Q. Nguyen, W. Yoo and S. Kobayashi,
Angew. Chem. Int. Ed., 2015, 54, 9209-9212; (j) L. Zhang, Z.
Han, X. Zhao, Z. Wang and K. Ding, Angew. Chem. Int. Ed.,
2015, 54, 6186-6189; (k) M. Hulla, F. D. Bobbink, S. Das and
Technol., 2016, 6, 6172-6176; (d) S. Chakraborty, U. Gellrich,
Y. Diskin-Posner, G. Leitus, L. Avram and D. Milstein, Angew.
Chem. Int. Ed., 2017, 56, 4229-4233.
11 (a) W. Chen, J. Shen, T. Jurca, C. Peng, Y. Lin, Y. Wang, W.
Shih, G. P. A. Yap and T. Ong, Angew. Chem. Int. Ed., 2015,
54, 15207-15212; (b) Y. Li, I. Sorriber, T. Yan, K. Junge and M.
Beller, Angew. Chem. Int. Ed., 2013, 52, 12156-12160; (c) K.
Beydoun, T. Stein, J. Klankermayer and W. Leitner, Angew.
Chem. Int. Ed., 2013, 52, 9554-9557; (d) Y. Li, X. Fang, K.
Junge and M. Beller, Angew. Chem. Int. Ed., 2013, 52, 9568-
9571.
P. J. Dyson, ChemCatChem, 2016, 8, 3338-3342; (l) S. Das, F.
D. Bobbink, S. Bulut, M. Soudania and P. J. Dyson, Chem.
Commun., 2016, 52, 2497-2500; (m) S. Zhang, Q. Mei, H. Liu,
H. Liu, Z. Zhang and B. X. Han, RSC Adv., 2016, 6, 32370-
32373; (n) B. Dong, L. Wang, S. Zhao, R. Ge, X. Song, Y.
Wang and Y. Gao, Chem. Commun., 2016, 52, 7082-7085; (o)
X. F. Liu, R. Ma, C. Qiao, H. Cao and L. N. He, Chem. Eur. J.,
2016, 22, 16489-16493; (p) C. Fang, C. Lu, M. Liu, Y. Zhu, Y.
12 (a) I. Knopf and C. C. Cummins. Organometallics, 2015, 34,
1601-1603; (b) M. Lafage, A. Pujol, N. Saffon-Merceron and N.
Mezailles. ACS Catal., 2016, 6, 3030-3035.
Fu and B. L. Lin, ACS Catal., 2016,
Nale and B. M. Bhanage, Synlett 2016, 27, 1413-1417; (r) C.
C. Chong and R. Kinjo, Angew. Chem. Int. Ed., 2015, 54
12116-12120; (s) H. Lv, Q. Xing, C. Yue, Z. Lei and F. Li. Chem.
6, 7876-7881; (q) D. B.
,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins