10.1002/ejoc.202100642
European Journal of Organic Chemistry
COMMUNICATION
[1]
a) T. Szucs, Drugs 1991, 41, 18; b) D. Enders, H. Eichenauer, Angew.
Chem. Int. Ed. Engl. 1976, 15, 549; c) Y. Yamashita, S. Kobayashi, J. Am.
Chem. Soc. 2004, 126, 11279; d) S. Shirakawa, P. J. Lombardi, J. L.
Leighton, J. Am. Chem. Soc. 2005, 127, 9974; e) N. C. Giampietro, J. P.
Wolfe, J. Am. Chem. Soc. 2008, 130, 12907; f) K. Tran, P. J. Lombardi,
J. L. Leighton, Org. Lett. 2008, 10, 3165; g) J. M. Coteron, D. Catterick,
J. Castro, M. J. Chaparro, B. Díaz, E. Fernández, S. Ferrer, F. J. Gamo,
M. Gordo, J. Gut, L. de las Heras, J. Legac, M. Marco, J. Miguel, V.
Muñoz, E. Porras, J. C. de la Rosa, J. R. Ruiz, E. Sandoval, P. Ventosa,
P. J. Rosenthal, J. M. Fiandor, J. Med. Chem. 2010, 53, 6129; h) L. O.
Davis, Org. Prep. Proced. Int. 2013, 45, 437; i) E. Gould, T. Lebl, A. M. Z
Slawin, M. Reid, T. Davies, A. D. Smith, Org. Biomol. Chem. 2013, 11,
7877.
According to the above research results and previous studies
in the Ni(II)-catalyzed asymmetric hydrogenations,[13] we
envisage that the active catalyst is chiral nickel hydride complex
3, which is generated from the heterolysis of H2 by the nickel
catalyst, and a plausible reaction pathway is proposed as follows
(Figure 2). Complex 3 coordinates with substrate 1a to form
complex 4, albeit with the rapid transformation between 1a and its
enamine 5 under the presence of AcOH. Intramolecular hydride
transfer of complex 4 to form complex 6, followed by the
coordination of H2 produces complex 7, which undergoes
subsequent sigma-bond metathesis to form complex 8.[13f,h]
Complex 8 releases the hydrogenation product 2a and the nickel
hydride complex 3 is regenerated with the help of AcOH.
[2]
[3]
For reviews, see: a) U. Ragnarsson, Chem. Soc. Rev. 2001, 30, 205; b)
S. Tšupova, U. Mäeorg, Heterocycles 2014, 88, 129; c) G. LeGoff, J.
Ouazzani, Bioorg. Med. Chem. 2014, 22, 6529; d) Q. Guo, Z. Lu,
Synthesis 2017, 49, 3835. For recent examples, see: e) P. Yang, C.
Zhang, Y. Ma, C. Zhang, A. Li, B. Tang, J. Zhou, Angew. Chem. Int. Ed.
2017, 56, 14702; Angew. Chem. 2017, 129, 14894; f) D. E. Polat, D. D.
Brzezinski, A. M. Beauchemin, Org. Lett. 2019, 21, 4849.
For reviews, see: a) W. Tang, X. Zhang, Chem. Rev. 2003, 103, 3029; b)
J.-H. Xie, S.-F. Zhu, Q.-L. Zhou, Chem. Rev. 2011, 111, 1713; c) D.-S.
Wang, Q.-A. Chen, S.-M. Lu, Y.-G. Zhou, Chem. Rev. 2012, 112, 2557;
d) Z. Zhang, N. A. Butt, W. Zhang, Chem. Rev. 2016, 116, 14769; e) C.
S. G. Seo, R. H. Morris, Organometallics 2019, 38, 47.
[4]
[5]
a) M. J. Burk, J. E. Feaster, J. Am. Chem. Soc. 1992, 114, 6266; b) M. J.
Burk, J. P. Martinez, J. E. Feaster, N. Cosford, Tetrahedron 1994, 50,
4399; c) M. J. Burk, M. F. Gross, Tetrahedron Lett. 1994, 35, 9363.
a) A. Yamazaki, I. Achiwa, K. Horikawa, M. Tsurubo, K. Achiwa, Synlett
1997, 1997, 455; b) T. Ireland, K. Tappe, G. Grossheimann, P. Knochel,
Chem. - Eur. J. 2002, 8, 843; c) K. Tappe, P. Knochel, Tetrahedron:
Asymmetry 2004, 15, 91; d) A. Gavryushin, K. Polborn, P. Knochel,
Tetrahedron: Asymmetry 2004, 15, 2279; e) N. Yoshikawa, L. Tan, J. C.
McWilliams, D. Ramasamy, R. Sheppard, Org. Lett. 2010, 12, 276; f) N.
Haddad, B. Qu, S. Rodriguez, L. van der Veen, D. C. Reeves, N. C.
Gonnella, H. Lee, N. Grinberg, S. Ma, D. Krishnamurthy, T. Wunberg, C.
H. Senanayake, Tetrahedron Lett. 2011, 52, 3718; g) Q. Hu, Y. Hu, Y. Liu,
Z. Zhang, Y. Liu, W. Zhang, Chem. - Eur. J. 2017, 23, 1040; h) D. Fan, Y.
Hu, F. Jiang, Z. Zhang, W. Zhang, Adv. Synth. Catal. 2018, 360, 2228.
a) Y.-Q. Wang, S.-M. Lu, Y.-G. Zhou, J. Org. Chem. 2007, 72, 3729; b)
Z.-P. Chen, S.-B. Hu, J. Zhou, Y.-G. Zhou, ACS Catal. 2015, 5, 6086; c)
Z.-P. Chen, M.-W. Chen, L. Shi, C.-B. Yu, Y.-G. Zhou, Chem. Sci. 2015,
6, 3415; d) Z.-P. Chen, S.-B. Hu, M.-W. Chen, Y.-G. Zhou, Org. Lett. 2016,
18, 2676.
Figure 2. Proposed mechanism.
[6]
In summary, an efficient asymmetric hydrogenation of
hydrazones was developed using an earth-abundant metal nickel
catalyst. A series of chiral hydrazines were synthesized with up to
99% yield and 99.4:0.6 er. An imine-enamine tautomerization of
the hydrazone substrates was observed as evidenced by the
deuterium labelling experiments. Mechanistic studies indicated
that the addition of acid promoted the dissociation of the active
nickel catalyst in the catalytic cycle.
[7]
[8]
M. Chang, S. Liu, K. Huang, X. Zhang, Org. Lett. 2013, 15, 4354.
C. H. Schuster, J. F. Dropinski, M. Shevlin, H. Li, S. Chen, Org. Lett. 2020,
22, 7562.
[9]
For reviews, see: a) K. Gopalaiah, Chem. Rev. 2013, 113, 3248; b) H.
Pellissier, H. Clavier, Chem. Rev. 2014, 114, 2775; c) Y.-Y. Li, S.-L. Yu,
W.-Y. Shen, J.-X. Gao, Acc. Chem. Res. 2015, 48, 2587; d) Z. Zhang, N.
A. Butt, M. Zhou, D. Liu, W. Zhang, Chin. J. Chem. 2018, 36, 443; e) L.
Alig, M. Fritz, S. Schneider, Chem. Rev. 2019, 119, 2681; f) Y. Liu, X.-Q.
Dong, X. Zhang, Chin. J. Org. Chem. 2020, 40, 1096; g) F. Agbossou-
Niedercorn, C. Michon, Coordin. Chem. Rev. 2020, 425, 213523; h) J.
Wen, F. Wang, X. Zhang, Chem. Soc. Rev. 2021, 50, 3211; i) J. Chen, W.
Zhang, Chin. J. Org. Chem. 2020, 40, 4372; j) Y. Tian, L. Hu, Y.-Z. Wang,
X. Zhang, Q. Yin, Org. Chem. Front. 2021, 8, 2328.
Acknowledgments
We would like to thank National Key R&D Program of China
(No. 2018YFE0126800), National Natural Science Foundation of
China (Nos. 21620102003, 21991112, 21702134), Shanghai
Municipal Education Commission (No. 201701070002E00030),
and Science and Technology Commission of Shanghai
Municipality (19JC1430100) for financial support. We thank the
Instrumental Analysis Center of SJTU for characterization.
[10] For recent examples, see: a) M. B. Widegren, G. J. Harkness, A. M. Z.
Slawin, D. B. Cordes, M. L. Clarke, Angew. Chem. Int. Ed. 2017, 56, 5825;
Angew. Chem. 2017, 129, 5919; b) M. Garbe, K. Junge, S. Walker, Z.
Wei, H. Jiao, A. Spannenberg, S. Bachmann, M. Scalone, M. Beller,
Angew. Chem. Int. Ed. 2017, 56, 11237; Angew. Chem. 2017, 129, 11389;
c) L. Zhang, Y. Tang, Z. Han, K. Ding, Angew. Chem. Int. Ed. 2019, 58,
4973; Angew. Chem. 2019, 131, 5027; d) F. Ling, H. Hou, J. Chen, S.
Nian, X. Yi, Z. Wang, D. Song, W. Zhong, Org. Lett. 2019, 21, 3937; e) L.
Zhang, Z. Wang, Z. Han, K. Ding, Angew. Chem. Int. Ed. 2020, 59, 15565;
Angew. Chem. 2020, 132, 15695; f) L. Zeng, H. Yang, M. Zhao, J. Wen,
J. H. R. Tucker, X. Zhang, ACS Catal. 2020, 10, 13794.
Conflict of interest
The authors declare no conflict of interest.
[11] For recent examples, see: a) J. F. Sonnenberg, K. Y. Wan, P. E. Sues, R.
H. Morris, ACS Catal. 2017, 7, 316; b) C. S. G. Seo, T. Tannoux, S. A. M.
Smith, A. J. Lough, R. H. Morris, J. Org. Chem. 2019, 84, 12040; c) C. K.
Keywords: asymmetric hydrogenation • nickel • hydrazones •
chiral hydrazines • imine-enamine tautomerization
4
This article is protected by copyright. All rights reserved.