Organic Letters
Letter
3053. (g) Carmona, D.; Lamata, M. P.; Viguri, F.; Rodriguez, R.; Oro,
L. A.; Lahoz, F. J.; Balana, A. I.; Tejero, T.; Merino, P. J. Am. Chem.
Soc. 2005, 127, 13386. (h) Viton, F.; Bernardinelli, G.; Kundig, E. P. J.
Am. Chem. Soc. 2002, 124, 4968. (i) Mita, T.; Ohtsuki, N.; Ikeno, T.;
Yamada, T. Org. Lett. 2002, 4, 2457. (j) Ohtsuki, N.; Kezuka, S.;
Kogami, Y.; Mita, T.; Ashizawa, T.; Ikeno, T.; Yamada, T. Synthesis
2003, 2003, 1462. (k) Kezuka, S.; Ohtsuki, N.; Mita, T.; Kogami, Y.;
Ashizawa, T.; Ikeno, T.; Yamada, T. Bull. Chem. Soc. Jpn. 2003, 76,
2197. (l) Shirahase, M.; Kanemasa, S.; Oderaotoshi, Y. Org. Lett.
2004, 6, 675. (m) Carmona, D.; Lamata, M. P.; Viguri, F.; Ferrer, J.;
Garcıa, N.; Lahoz, F. J.; Martın, M. L.; Oro, L. A. Eur. J. Inorg. Chem.
2006, 2006, 3155.
Prod. Rep. 2004, 21, 752. (i) Desai, M. C.; Lefkowitz, S. L.; Thadeio,
P. F.; Longo, K. P.; Snider, R. M. J. Med. Chem. 1992, 35, 4911.
(11) (a) Bonacorso, H. G.; Ketzer, W. C.; Calheiro, T. P.;
Rodrigues, M. B.; Zanatta, N.; Martins, A. P.; Frizzo, C. P. J. Fluorine
Chem. 2018, 210, 142. (b) Sosnovskikh, W. Y.; Moshkin, V. S.;
Kodess, M. I. Tetrahedron 2008, 64, 7877. (c) Zhao, Q.; Han, F.;
Romero, D. L. J. Org. Chem. 2002, 67, 3317. (d) Broggini, G.; Folcio,
F.; Sardone, N.; Sonzogni, M.; Zecchi, G. Tetrahedron: Asymmetry
1996, 7, 797. (e) Frederickson, M. Tetrahedron 1997, 53, 403.
(12) (a) Lizza, J. R.; Moura-Letts, G. Synthesis 2017, 49, 1231.
(b) Bakanas, I. J.; Moura-Letts, G. Eur. J. Org. Chem. 2016, 5345.
(c) Lizza, J. R.; Patel, S. V.; Yang, C. F.; Moura-Letts, G. Eur. J. Org.
Chem. 2016, 5160. (d) Neuhaus, W. C.; Moura-Letts, G. Tetrahedron
Lett. 2016, 57, 4974. (e) Quinn, D. J.; Haun, G. J.; Moura-Letts, G.
Tetrahedron Lett. 2016, 57, 3844. (f) Costantini, N. V.; Bates, A. D.;
Haun, G. J.; Chang, N. M.; Moura-Letts, G. ACS Sustainable Chem.
Eng. 2016, 4, 1906. (g) Neuhaus, W. C.; Bakanas, I. J.; Lizza, J. R.;
Boon, C., Jr; Moura-Letts, G. Green Chem. Lett. Rev. 2016, 9, 39.
(h) Beebe, A. W.; Dohmeier, E. F.; Moura-Letts, G. Chem. Commun.
2015, 51, 13511.
(4) Quinn, D. J.; Tumbelty, L. N.; Moscarello, E. M.; Paneque, A.
N.; Zinsky, A. H.; Russ, M. P.; Haun, G. J.; Cinti, N. A.; Dare, R. M.;
Moura-Letts, G. Tetrahedron Lett. 2017, 58, 4682.
(5) (a) Yamaguchi, M.; Matsuda, A.; Ichikawa, S. Org. Biomol. Chem.
2015, 13, 1187. (b) Aguiar, A.; Leite, A.; Silva, A. M. N.; Tome, A. C.;
Cunha-Silva, B. D.; Castro, M.; Silva, A. M. G. Org. Biomol. Chem.
2015, 13, 7131. (c) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247.
(d) Jeong, J. H.; Weinreb, S. M. Org. Lett. 2006, 8, 2309. (e) Tamura,
O.; Iyama, N.; Ishibashi, H. J. Org. Chem. 2004, 69, 1475. (f) Dhavale,
D. D.; Jachak, S. M.; Karche, N. P.; Trombini, N. C. Tetrahedron
2004, 60, 3009. (g) White, J. D.; Hansen, J. D. J. Am. Chem. Soc.
2002, 124, 4950. (h) Bhutia, Z. T.; Geethika, P.; Malik, A.; Kumar, A.;
Chatterjee, A.; Roy, B. G.; Banerjee, M. RSC Adv. 2015, 5, 99566.
(i) Furnival, R. C.; Saruengkhanphasit, R.; Holberry, H. E.; Shewring,
J. R.; Guerrand, H. D. S.; Adams, H.; Coldham, I. Org. Biomol. Chem.
2016, 14, 10953. (j) Bakthadoss, M.; Srinivasan, J. RSC Adv. 2015, 5,
67206.
(13) (a) Gesmundo, N. J.; Grandjean, J.-M. M.; Nicewicz, D. A. Org.
Lett. 2015, 17, 1316. (b) Cavanaugh, C. L.; Nicewicz, D. A. Org. Lett.
2015, 17, 6082.
(14) (a) Clark, A. Chem. Soc. Rev. 2002, 31, 1. (b) Pintauer, T.;
Matyjaszewski, K. Chem. Soc. Rev. 2008, 37, 1087. (c) Barton, D. H.
R.; Csiba, M. A.; Jaszberenyi, J. C. Tetrahedron Lett. 1994, 35, 2869.
(d) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson,
C. R. J. J. Am. Chem. Soc. 2011, 133, 4160. (e) Wallentin, C.-J.;
Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc.
2012, 134, 8875. (f) Pirtsch, M.; Paria, S.; Matsuno, T.; Isobe, H.;
Reiser, O. Chem. - Eur. J. 2012, 18, 7336. (g) Iqbal, N.; Choi, S.; Kim,
E.; Cho, E. J. J. Org. Chem. 2012, 77, 11383.
(15) Cismesia, M. A.; Yoon, T. P. Chem. Sci. 2015, 6, 5426.
(16) (a) Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.;
Balzani, V. Top. Curr. Chem. 2007, 280, 117. (b) McCusker, J. K. Acc.
Chem. Res. 2003, 36, 876. (c) Bock, C. R.; Connor, J. A.; Gutierrez, A.
R.; Meyer, T. J.; Whitten, D. G.; Sullivan, B. P.; Nagle, J. K. J. Am.
Chem. Soc. 1979, 101, 4815.
̈
̈
(6) (a) Karkas, M. D.; Porco, J. A., Jr; Stephenson, C. R. Chem. Rev.
2016, 116, 9683. (b) Bach, T.; Hehn, J. P. Angew. Chem., Int. Ed.
2011, 50, 1000. (c) Hoffmann, N. Chem. Rev. 2008, 108, 1052.
(d) Takeda, H.; Ishitani, O. Coord. Chem. Rev. 2010, 254, 346−354.
̈
(e) Kalyanasundaram, K.; Gratzel, M. Coord. Chem. Rev. 1998, 177,
347. (f) Narayanam, J. M. R.; Stephenson, C. R. Chem. Soc. Rev. 2011,
40, 102. (g) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51,
6828. (h) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
(7) (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.
2013, 113, 5322. (b) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J.
Org. Chem. 2016, 81, 6898. (c) Romero, N. A.; Nicewicz, D. A. Chem.
Rev. 2016, 116, 10075. (d) Beatty, J. W.; Stephenson, C. R. Acc. Chem.
Res. 2015, 48, 1474. (e) Pitre, S. P.; McTiernan, C. D.; Scaiano, J. C.
Acc. Chem. Res. 2016, 49, 1320. (f) Skubi, K. L.; Blum, T. R.; Yoon, T.
P. Chem. Rev. 2016, 116, 10035.
(17) General protocol for synthesis of chromenoisoxazolidines from
nitrones: In an oven-dried 250 mL round-bottom flask, nitrone (1
mmol, 1 equiv) and Ru(bpy)3Cl2 (0.05 mmol, 0.05 equiv, 5 mol %)
were dissolved in CH3CN (200 mL) 0.005 M under N2 atmosphere.
The resulting mixture was then stirred at room temperature in a
photoreactor with a white LED bulb for 24 h. The resulting crude was
then dried under reduced pressure, and the residue was loaded
directly onto a silica gel column for automated purification.
(18) The isomers isolated in this reaction were characterized by 1D
(8) (a) Rueping, M.; Leonari, D.; Poisson, T. Chem. Commun. 2011,
47, 9615. (b) Zou, Y.-Q.; Lu, L.-Q.; Fu, L.; Chang, N.-J.; Rong, J.;
Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2011, 50, 7171.
(c) Maity, S.; Zhu, M.; Shinabery, R. S.; Zheng, N. Angew. Chem., Int.
Ed. 2012, 51, 222. (d) Hou, H.; Zhu, S.; Pan, F.; Rueping, M. Org.
Lett. 2014, 16, 2872. (e) Xuan, J.; Xia, X.-D.; Zeng, T.-T.; Feng, Z.-J.;
Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2014, 53,
5653. (f) Zeng, T.-T.; Xuan, J.; Ding, W.; Wang, K.; Lu, L.-Q.; Xiao,
W.-J. Org. Lett. 2015, 17, 4070. (g) Chen, L.; Li, H.; Li, P.; Wang, L.
Org. Lett. 2016, 18, 3646. (h) Alfonzo, E.; Alfonso, F. S.; Beeler, A. B.
Org. Lett. 2017, 19, 2989.
1
and 2D H NMR. The cis stereochemistry was assigned based on
coupling constant and NOE analysis.
(19) (a) Becker, D. A.; Ley, J. J.; Echegoyen, L.; Alvarado, R. J. Am.
Chem. Soc. 2002, 124, 4678. (b) Rosselin, M.; Choteau, F.; Zeamari,
K.; Nash, K. M.; Nash, A.; Das, A.; Lauricella, R.; Lojou, E.; Tuccio,
B.; Villamena, F. A.; Durand, G. J. Org. Chem. 2014, 79, 6615.
(20) Rosselin, M.; Tuccio, B.; Perio, P.; Fabre, P.-L.; Durand, G.
Electrochim. Acta 2016, 193, 231.
(9) (a) Zheng, L.; Gao, F.; Yang, C.; Gao, G.-L.; Zhao, Y.; Gao, Y.;
Xia, W. Org. Lett. 2017, 19, 5086. (b) Jang, G. S.; Lee, J.; Seo, J.; Woo,
K. Org. Lett. 2017, 19, 6448.
(10) (a) Gomez-Canas, M.; Morales, P.; Garcia-Toscano, L.;
Nvarrete, C.; Munoz, E.; Jagerovic, N.; Fernandez-Ruiz, J.; Garcia-
Arencibia, M.; Pazos, M. R. Pharmacol. Res. 2016, 110, 205.
(b) Kwon, Y. J.; Saubern, S.; MacDonald, J. M.; Huang, X.-P.;
Setola, V.; Roth, B. L. Bioorg. Med. Chem. Lett. 2010, 20, 5488.
(c) Liu, L.-X.; Ruan, Y.-P; Guo, Z.-Q; Huang, P.-Q J. Org. Chem.
2004, 69, 6001. (d) Gonzalez, A. S.; Arrayas, R. G.; Rivero, M. R.;
Carretero, J. C. Org. Lett. 2008, 10, 4335. (e) Ruan, S.-T.; Luo, J.-M;
Du, Y.; Huang, P.-Q Org. Lett. 2011, 13, 4938. (f) Tan, C. K.; Yeung,
Y.-Y. Chem. Commun. 2012, 48, 5793. (g) Pansare, S. V.; Paul, E. K.
Org. Biomol. Chem. 2012, 10, 2119. (h) Ma, X. Q.; Gang, D. R. Nat.
E
Org. Lett. XXXX, XXX, XXX−XXX