LETTER
One-Pot Synthesis of Xanthones
2579
(b) Sousa, M. E.; Pinto, M. M. M. Curr. Med. Chem. 2005,
12, 2447.
(9) Zhao, J.; Larock, R. C. J. Org. Chem. 2007, 72, 583; see also
ref. 14.
sponding triflate 19 allowed the introduction of a second
phenyl moiety by the Suzuki–Miyaura coupling to give
1,8-diphenylxanthone (20) in 72% yield.
(10) Wang, S.; Xie, K.; Tan, Z.; An, X.; Zhou, X.; Guo, C.-C.;
Peng, Z. Chem. Commun. 2009, 6469.
(11) Dang, A.-T.; Miller, D. O.; Dawe, L. N.; Bodwell, G. J. Org.
Lett. 2008, 10, 233.
O
1
8
8a
9a
2
3
7
6
9
(12) For a review on the reactions of organofluorine compounds,
see: Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.
(13) For an example of xanthone synthesis by utilizing Fries-type
rearrangement, see: Horne, S.; Rodrigo, R. J. Org. Chem.
1990, 55, 4520.
O
5
4
Figure 1 Xanthone numbering
(14) Recently, Larock and co-workers reported a xanthone
synthesis involving a similar reaction pathway in which the
aryl anion, formed by nucleophilic attack of a carboxylate
anion of o-haloarenecarboxylic acid to aryne, undergoes
Fries-type rearrangement and subsequent intramolecular
SNAr reaction. See: (a) Dubrovskiy, A. V.; Larock, R. C.
Org. Lett. 2010, 12, 3117. (b) Dubrovskiy, A. V.; Larock, R.
C. Tetrahedron 2013, 69, 2789; Advantages of the present
protocol over Larock’s approach include the lower reaction
temperature (25 versus 125 °C), the shorter reaction time,
and accessibility to sterically congested xanthone
derivatives.
In summary, a novel one-pot synthesis of xanthones has
been demonstrated.22 The reaction proceeds under mild
conditions promoted by fluoride ion, and provides an effi-
cient route to 1,8-disubstituted xanthone derivatives that
are not readily accessible by conventional methods. Fur-
ther studies including application to the synthesis of natu-
ral products with densely functionalized xanthone
structures are under way.
Acknowledgment
(15) Simchen, G.; Pletschinger, J. Angew. Chem. Int. Ed. Engl.
1976, 15, 428.
We are grateful to Mr. Haruhiko Fukaya, Tokyo University of Phar-
macy and Life Sciences, for X-ray analyses. This work was suppor-
ted by a Grant-in-Aid for Specially Promoted Research (No.
23000006) from the Japan Society for the Promotion of Science
(JSPS) (Japan).
(16) (a) The following conditions were examined: TBAT ([(n-
Bu)4N]+[SiPh3F2]–), TASF ([(Me2N)3S]+ [SiMe3F2]–),
Bn(Me)3NF, Me4NF, (n-Bu)4NF·(t-BuOH)4,16b C6F6/(n-
Bu)4NCN,16c CsF, KF, ZnF2, and LiBF4 as the fluoride ion
source; Et2O, 1,4-dioxane, DME, DMF, CH2Cl2, MeCN, and
toluene as the solvent; molecular sieves 3A and 13X as the
drying agent. The use of TBAT, TASF, Bn(Me)3NF, or
Me4NF (1.5 equiv each) in the presence of 4 Å molecular
sieves in THF gave xanthone 6a in moderate yields (30–
45%). Other combinations were still less effective. (b) Kim,
D. W.; Jeong, H.-J.; Lim, S. T.; Sohn, M.-H. Angew. Chem.
Int. Ed. 2008, 47, 8404. (c) Sun, H.; Dimagno, S. J. Am.
Chem. Soc. 2005, 127, 2050.
(17) Since the use of a catalytic amount of TBAF in the reaction
of 5b led to unacceptable yield of 1-methoxyxanthone (6b)
[60% with 0.5 equiv of TBAF (25 °C, 2 h); 38% with 0.2
equiv of TBAF (reflux, 24 h)], we opted to use 1 equiv of
TBAF in the reactions used to obtain the congested xanthone
possessing substituent(s) at C1 and/or C8.
(18) Treatment of benzophenone 10 with Cs2CO3 in DMF (80 °C,
5 h) cleanly effected the SNAr reaction to give xanthone in
90% yield.
(19) (a) Chuzel, O.; Roesch, A.; Genet, J.-P.; Darses, S. J. Org.
Chem. 2008, 73, 7800. (b) O’Keefe, B. M.; Simmons, N.;
Martin, S. F. Org. Lett. 2008, 10, 5301. (c) Lampe, J. W.;
Hughes, P. F.; Biggers, C. K.; Smith, S. H.; Hu, H. J. Org.
Chem. 1994, 59, 5147.
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
References and Notes
(1) For recent reviews on natural xanthones, see: (a) El-Seedi,
H. R.; El-Barbary, M. A.; El-Ghorab, D. M.; Bohlin, L.;
Borg-Karlson, A. K.; Göransson, U.; Verpoorte, R. Curr.
Med. Chem. 2010, 17, 854. (b) Pinto, M. M. M.; Sousa, M.
E.; Nascimento, M. S. J. Curr. Med. Chem. 2005, 12, 2517.
(2) Franklin, G.; Conceição, L. F. R.; Kombrink, E.; Dias, A. C.
P. Phytochemistry 2009, 70, 60.
(3) Park, K. H.; Park, Y.-D.; Han, J.-M.; Im, K.-R.; Lee, B. W.;
Jeong, I. Y.; Jeong, T.-S.; Lee, W. S. Bioorg. Med. Chem.
Lett. 2006, 16, 5580.
(4) Santos, C. M. M.; Freitas, M.; Ribeiro, D.; Gomes, A.; Silva,
A. M. S.; Cavaleiro, J. A. S.; Fernandes, E. Bioorg. Med.
Chem. 2010, 18, 6776.
(5) Zelefack, F.; Guilet, D.; Fabre, N.; Bayet, C.; Chevalley, S.;
Ngouela, S.; Lenta, B. N.; Valentin, A.; Tsamo, E.; Dijoux-
Franca, M.-G. J. Nat. Prod. 2009, 72, 954.
(6) (a) Sousa, E.; Pavia, A.; Nazareth, N.; Gales, L.; Damas, A.
M.; Nascimento, M. S. J.; Pinto, M. Eur. J. Med. Chem.
2009, 44, 3830. (b) Pedro, M.; Cerqueira, F.; Sousa, M. E.;
Nascimento, M. S. J.; Pinto, M. Bioorg. Med. Chem. 2002,
10, 3725.
(7) (a) Khan, M. T. H.; Orhan, I.; Şenol, F.; Kartal, M.; Sener,
B.; Dvorská, M.; Šmejkal, K.; Šlapetovám, T. Chem. Biol.
Interact. 2009, 181, 383. (b) Ryu, Y. B.; Curtis-Long, M. J.;
Lee, J. W.; Kim, J. H.; Kim, J. Y.; Kang, K. Y.; Lee, W. S.;
Park, K. H. Bioorg. Med. Chem. 2009, 17, 2744.
(8) For recent reviews on the synthesis of xanthones, see:
(a) Masters, K.-S.; Bräse, S. Chem. Rev. 2012, 112, 3717.
(20) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron
Lett. 1975, 16, 4467. (b) Chinchilla, R.; Nájera, C. Chem.
Soc. Rev. 2011, 40, 5084.
(21) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(22) One-Pot Synthesis of Xanthones; Typical Procedure
(Table 2, Entry 4): Powdered 4 Å molecular sieves (3.0 g)
were placed in a two-necked, round-bottom flask, and dried
by heating with a heat gun under vacuum. The flask was
cooled to r.t. and filled with argon, then THF (9 mL) and
TBAF (1.0 M in THF, 0.60 mL, 0.60 mmol) were added.
After stirring for 1.5 h at 25 °C, a solution of ester 5d (202
mg, 599 μmol) in THF (10 mL) was added and stirring was
continued for 15 min. The reaction was quenched by the
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 2575–2580