Organic Letters
Letter
11a was given in 60% yield (Scheme 5, eq 5). These results
suggest that aldimine might be the intermediate involved in
this transformation.
On the basis of the above preliminary results and the
reported literature, a plausible reaction pathway is illustrated
(Scheme 6). Initially, intermediate A was formed by the
ORCID
Notes
The authors declare no competing financial interest.
Scheme 6. Possible Reaction Mechanism
ACKNOWLEDGMENTS
■
The authors thank the National Key Research and Develop-
ment Program of China (2016YFA0602900), the National
Natural Science Foundation of China (21420102003,
21502055, and 21642005), and the Fundamental Research
Funds for the Central Universities (2015ZY001).
REFERENCES
■
(1) (a) Wang, Q.; Wang, D.-X.; Wang, M.-X.; Zhu, J. Acc. Chem. Res.
2018, 51, 1290. (b) Deibl, N.; Ament, K.; Kempe, R. J. Am. Chem. Soc.
2015, 137, 12804. (c) Deibl, N.; Kempe, R. Angew. Chem., Int. Ed.
2017, 56, 1663. (d) Li, Y.; Zhu, F.; Wang, Z.; Wu, X.-F. Chem.
Commun. 2018, 54, 1984. (e) Yang, D.; Yu, Y.; Wu, Y.; Feng, H.; Li,
X.; Cao, H. Org. Lett. 2018, 20, 2477.
coordination of zinc to the azide group, increasing the
electrophilicity of the olefin.17 Next, nucleophilic attack by
aniline generates intermediate B, with the loss of nitrogen.
Then, intermediate B produces the imine intermediate C
through C−C bond cleavage18 giving benzonitrile as a
byproduct, which was detected by GC-MS (for details, please
see the SI). Subsequently, intermediate C undergoes an
intramolecular cyclization [4 + 2]-annulation with 2a to
produce intermediate E, which further generates intermediate
F with the elimination of HN3.11 Finally, aromatization of F by
O2 in air furnishes the desired quinoline product.
In conclusion, we have discovered an unprecedented
transformation of vinyl azides, in which two types of cleavage
of vinyl azides were involved in a one-step procedure to
assemble 4-substituted quinolines. In this conversion, vinyl
azides function as a dual synthon to provide a logic-based
strategy to further explore MCRs. The reaction features high
step economy, mild conditions, easy operation, and utilization
of environmentally friendly air as the sole oxidant. Further
studies to clearly understand the reaction mechanism and the
synthetic applications are ongoing in our group.
(2) For reviews, see: (a) Ganem, B. Acc. Chem. Res. 2009, 42, 463.
(b) Godineau, E.; Landais, Y. Chem. - Eur. J. 2009, 15, 3044.
(3) For selected examples see: (a) Huang, B.; Zeng, L.; Shen, Y.;
Cui, S. Angew. Chem., Int. Ed. 2017, 56, 4565. (b) Liu, Z.; Liu, Z.-Q.
Org. Lett. 2017, 19, 5649. (c) Kanazawa, J.; Maeda, K.; Uchiyama, M.
J. Am. Chem. Soc. 2017, 139, 17791.
(4) (a) Guo, W.; Liao, J.; Liu, D.; Li, J.; Ji, F.; Wu, W.; Jiang, H.
Angew. Chem., Int. Ed. 2017, 56, 1289. (b) Xu, C.; Jiang, S.-F.; Wen,
X.-H.; Zhang, Q.; Zhou, Z.-W.; Wu, Y.; Jia, F.-C.; Wu, A. Adv. Synth.
Catal. 2018, 360, 2267. (c) Das, U. K.; Shimon, L. J. W.; Milstein, D.
Chem. Commun. 2017, 53, 13133.
(5) Ding, S.; Jiao, N. Angew. Chem., Int. Ed. 2012, 51, 9226.
(6) For selected examples, see: (a) Shen, T.; Huang, X.; Liang, Y.-F.;
Jiao, N. Org. Lett. 2015, 17, 6186. (b) Tomita, R.; Yasu, Y.; Koike, T.;
Akita, M. Angew. Chem., Int. Ed. 2014, 53, 7144. (c) Ashikari, Y.;
Nokami, T.; Yoshida, J. J. Am. Chem. Soc. 2011, 133, 11840. (d) Xu,
R.; Wan, J.-P.; Mao, H.; Pan, Y. J. Am. Chem. Soc. 2010, 132, 15531.
(e) Ren, X.; Chen, J.; Chen, F.; Cheng, J. Chem. Commun. 2011, 47,
6725. (f) Gao, Q.; Wu, X.; Li, Y.; Liu, S.; Meng, X.; Wu, A. Adv. Synth.
Catal. 2014, 356, 2924. (g) Jiang, Y.; Loh, T.-P. Chem. Sci. 2014, 5,
4939. (h) Jia, T.; Bellomo, A.; Baina, K. EL; Dreher, S. D.; Walsh, P. J.
J. Am. Chem. Soc. 2013, 135, 3740. (i) Jia, T.; Bellomo, A.; Montel, S.;
Zhang, M.; El Baina, K.; Zheng, B.; Walsh, P. J. Angew. Chem., Int. Ed.
2014, 53, 260.
ASSOCIATED CONTENT
* Supporting Information
■
(7) (a) For a review, see: Natte, K.; Neumann, H.; Beller, M.;
Jagadeesh, R. V. Angew. Chem., Int. Ed. 2017, 56, 6384. (b) For an
example, see: Chakrabarti, K.; Maji, M.; Panja, D.; Paul, B.; Shee, S.;
Das, G. K.; Kundu, S. Org. Lett. 2017, 19, 4750.
(8) For reviews, see: (a) Jung, N.; Brase, S. Angew. Chem., Int. Ed.
2012, 51, 12169. (b) Hu, B.; DiMagno, S. G. Org. Biomol. Chem.
2015, 13, 3844. (c) Hayashi, H.; Kaga, A.; Chiba, S. J. Org. Chem.
2017, 82, 11981. (d) Fu, J.; Zanoni, G.; Anderson, E. A.; Bi, X. Chem.
Soc. Rev. 2017, 46, 7208.
S
The Supporting Information is available free of charge on the
Experimental procedures, condition screening table,
characterization data, and copies of NMR spectra for
(9) (a) Chiba, S.; Wang, Y.-F.; Lapointe, G.; Narasaka, K. Org. Lett.
2008, 10, 313. (b) Chen, F.; Shen, T.; Cui, Y.; Jiao, N. Org. Lett.
2012, 14, 4926. (c) Wu, Y.; Zhu, L.; Yu, Y.; Luo, X.; Huang, X. J. Org.
Chem. 2015, 80, 11407. (d) Zhang, G.; Ni, H.; Chen, W.; Shao, J.;
Liu, H.; Chen, B.; Yu, Y. Org. Lett. 2013, 15, 5967. (e) Luo, J.; Chen,
W.; Shao, J.; Liu, X.; Shu, K.; Tang, P.; Yu, Y. RSC Adv. 2015, 5,
55808. (f) Shao, J.; Liu, X.; Shu, K.; Tang, P.; Luo, J.; Chen, W.; Yu,
Y. Org. Lett. 2015, 17, 4502. (g) Chen, B.; Guo, S.; Guo, X.; Zhang,
G.; Yu, Y. Org. Lett. 2015, 17, 4698. (h) Liu, Z.; Ji, H.; Gao, W.; Zhu,
G.; Tong, L.; Lei, F.; Tang, B. Chem. Commun. 2017, 53, 6259.
(i) Wang, Y.-F.; Chiba, S. J. Am. Chem. Soc. 2009, 131, 12570.
(j) Wang, Q.; Huang, J.; Zhou, L. Adv. Synth. Catal. 2015, 357, 2479.
(k) Wang, Y.-F.; Toh, K. K.; Lee, J.-Y.; Chiba, S. Angew. Chem., Int.
Accession Codes
CCDC 1814447 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
Corresponding Authors
■
D
Org. Lett. XXXX, XXX, XXX−XXX