10.1002/anie.201900721
Angewandte Chemie International Edition
COMMUNICATION
enantiomerically pure form of isoflavane16 and α-aryl
hydrocoumarin successfully. We believe the study would have
versatile application in the synthesis of natural products and
bioactive compounds which contain chromene core.
hydrocoumarin17 are very limited.
Table 4. Scope of chromene acetals and arylboroxines,[a] racemization of
ethoxy-chromene 4a, and transformation of product 5aa.
Keywords: Asymmetric catalysis
• Kinetic Resolution •
Dynamic Kinetic Resolution • Hydroarylation • Flavonoids
[1] a) J. B. Harborne, (Ed.) The Flavonoids: Advances in Research Since
1980, Chapman and Hall: New York, 1988; b) J. B. Harborne, C. A.
Williams, Nat. Prod. Rep. 1995, 12, 639-657; c) J. C. Le Bail, F.
Varnat, J. C. Nicolas, G. Habrioux, Cancer Lett. 1998, 130, 209-216; d)
M. E. Bracke, H. T. Depypere, T. Boterberg, V. L. Van Marck, K. M.
Vennekens, E. Vanluchene, M. Nuytinck, R. Serreyn, M. M. Mareel, J.
Natl. Cancer Inst. 1999, 91, 354-359; e) P. G. Pietta, J. Nat. Prod.
2000, 63, 1035-1042; f) L. C. Chang, A. D. Kinghorn, Bioactive
Compounds from Natural Sources: Isolation, Characterisation and
Biological Properties; Tringali, C., Ed.; Taylor & Francis: London, 2001
g) Flavonoids: Chemistry, Biochemistry and Applications; Andersen, Ø.
M., Markham, K. R., Eds.; Taylor & Francis: London, 2006
;
.
[2] a) M. Rueping, U. Uria, M. Y. Lin, I. Atodiresei, J. Am. Chem. Soc.
2011, 133, 3732-3735; b) H. He, K. Y. Ye, Q. F.Wu, L. X. Dai, S. L.
You, Adv. Synth. Catal., 2012, 354, 1084-1094; c) B.-S. Zeng, X. Yu,
P. W. Siu, K. A. Scheidt, Chem. Sci. 2014, 5, 2277-2281; d) H. Zhang,
S. Lin, E. N. Jacobsen, E. N. J. Am. Chem. Soc. 2014, 136, 16485-
16488; e) A. Keβberg, P. Metz, Angew. Chem. Int. Ed. 2016, 55,
1160-1163.
[3] For selected reviews and examples: a) P. Tian, H.-Q. Dong, G.-Q. Lin,
ACS Catal. 2012, 2, 95-119; b) D. V. Partyka, Chem. Rev. 2011, 111,
1529-1595; c) H. J. Edwards, J. D. Hargrave, S. D. Penrose, C. G.
Frost, Chem. Soc. Rev. 2010, 39, 2093-2105; d) J. B. Johnson, T.
Rovis, Angew. Chem., Int. Ed. 2008, 47, 840-871; e) S. Darses, J.-P.
Genet, Eur. J. Org. Chem. 2003, 4313-4327; f) T. Hayashi, K.
Yamasaki, Chem. Rev. 2003, 103, 2829-2844; g) K. Fagnou, M.
Lautens, Chem. Rev. 2003
, 103, 169-196; h) C. Bolm, J. P.
Hildebrand, K. Muñiz, N. Hermanns, Angew. Chem. Int. Ed. 2001, 40,
3284-3308; i) J. Wencel-Delord, C. Nimphius, F. Patureau, F. Glorius,
Chem. Asian J. 2012, 7, 1208-1212.
[4] a) F. Menard, M. Lautens, Angew. Chem. Int. Ed. 2008, 47, 2085-2088;
b) J. Panteleev, F. Menard, M. Lautens, Adv. Synth. Catal. 2008, 350,
2893-2902; c) J. Bexrud, M. Lautens, Org. Lett., 2010, 12, 3160-3163
[5] a) K. M.-H. Lim, T. Hayashi, J. Am. Chem. Soc. 2017, 139, 8122
b) K. M.-H. Lim, T. Hayashi, J. Am. Chem. Soc. 2015, 137, 3201
c) C. M. So, T. Hayashi, J. Am. Chem. Soc. 2013, 135, 10990 10993.
−
8125;
[a] Reaction conditions: [Rh(cod)OH]2 (2.5 mol %) and (R)-Xylyl-P-Phos (6
mol %), and H2O (0.2mmol) in toluene (1 mL) were stirred at rt for 30 min
under argon. 4a-k (0.2 mmol), (ArBO)3 (0.16 mmol), and K3PO4 (0.1 mmol)
and Et3N (0.1 mmol) were then added. The mixture were stirred at 80 C for
12 h. Isolated yields were shown; ees were determined by HPLC analysis. [b]
ArB(OH)2 (0.48 mmol) was used instead of aryl boroxine (0.16 mmol) and H2O
−
3204;
−
[6] M. Lautens, A. Roy, K. Fukuoka, K. Fagnou, B. Martín-Matute, J. Am.
Chem. Soc. 2001, 123, 5358–5359.
[7] Saxena, A.; Lam, H. W. Chem. Sci. 2011, 2, 2326-2331.
[8] a) D. J. Bauer, J. W. T. Selway, J. F. Batchelor, M. Tisdale, I. C.
Caldwell, D. A. B. Young, Nature, 1981, 292, 369; b) M. G. Quaglia, N.
Desideri, E. Bossù, I. Sestili, C. Conti, Chirality, 1992, 4, 65.
[9] CCDC 1589087 [for 3af] and CCDC 1846172 [for 5ea] contain the
supplementary crystallographic data for this paper. These data can be
(0.2 mmol). [c] 25 eq of D2O was used instead of H2O. DCM
dichloromethane. PCC = Pyridinium chlorochromate.
=
In summary, a novel kinetic resolution and dynamic kinetic
resolution of chromene via Rh-catalyzed asymmetric
hydroarylation is well-developed. Under the mild conditions, a
variety of chiral 2,3-diaryl-chromanes containing two vicinal
stereogenic centers as well as the recovered flavenes were
afforded in good yields with excellent ees. The deuterium
labeling experiment and proposed mechanism revealed why
hydroarylation product was resulted here instead of Heck-type
products (s factor is up to 532). In addition, the strategy was
further applied to the development of dynamic kinetic resolution
of chromene acetals. The products obtained could be easily
converted into either chiral isoflavanes (3-aryl chromanes) or
[10] For selected reviews: a) V. Bhat, E. R. Welin, X. Guo, B. M. Stoltz,
Chem. Rev. 2017, 117, 4528−4561. b) F. F. Huerta, A. B. E. Minidis,
J.-E. Bäckvall, Chem. Soc. Rev., 2001, 30, 321–331. c) A. E. Dīaz-
Ālvarez, L. Mesas-Sānchez, P. Dinēr, Angew. Chem. Int. Ed. 2013, 52,
502-504. d) P. Hoyos, V. Pace, A. R. Alcāntaraa, Adv. Synth. Catal.
2012, 354, 2585-2611. e) J. Wencel-Delord, F. Colobert, Synthesis
2016, 48, 2981-2996.
[11] M. K. Lemke, P. Schwab, P. Fischer, S. Tischer, M. Witt, L.
Noehringer, V. Rogachev, A. Jager, O. Kataeva, R. Frohlich, P. Metz,
Angew. Chem. Int. Ed. 2013, 52, 11651-11655.
This article is protected by copyright. All rights reserved.