Communication
ChemComm
4 Y. Hirata, T. Inui, Y. Nakao and T. Hiyama, J. Am. Chem. Soc., 2009,
131, 6624–6631.
5 (a) Y. Sakakibara, S. Matsuzaka, S. Nagamine, M. Sakai and
N. Uchino, Nippon Kagaku Kaishi, 1985, 409–415; (b) B. Saha and
T. V. RajanBabu, Org. Lett., 2006, 8, 4657–4659; (c) L. Bini, C. Mu¨ller,
J. Wilting, L. von Chrzanowski, A. L. Spek and D. Vogt, J. Am. Chem.
Soc., 2007, 129, 12622–12623; (d) S. Arai, H. Hori, Y. Amako and
A. Nishida, Chem. Commun., 2015, 51, 7493–7496; (e) Y. Amako,
S. Arai and A. Nishida, Org. Biomol. Chem., 2017, 15, 1612–1617.
Scheme 6 Enantioselective electrophilic cyanation using a chiral allylic
borane.
¨
6 For selected reviews, see: (a) J. Schorgenhumer and M. Waser, Org.
Chem. Front., 2016, 3, 1535–1540; (b) M. R. R. Prabhath, L. Williams,
S. V. Bhat and P. Sharma, Molecules, 2017, 22, 615; (c) G. Yan,
Y. Zhang and J. Wang, Adv. Synth. Catal., 2017, 359, 4068–4105;
(d) J. Cui, J. Song, Q. Liu, H. Liu and Y. Dong, Chem. – Asian J., 2018,
13, 482–495; (e) K. Kiyokawa, T. Nagata and S. Minakata, Synthesis,
2018, 485–498.
7 (a) K. Kiyokawa, T. Nagata and S. Minakata, Angew. Chem., Int. Ed.,
2016, 55, 10458–10462; (b) T. Nagata, A. Tamaki, K. Kiyokawa,
R. Tsutsumi, M. Yamanaka and S. Minakata, Chem. – Eur. J., 2018,
24, 17027–17032.
prepared from diisopinocampheylborane [(À)-(Ipc)2BH] and 1r,
and the cyanation resulted in the formation of (S)-2r in a 66%
enantiomeric excess (Scheme 6).17,18 This preliminary result,
albeit with moderate enantioselectivity, indicates that the
present method offers a promising strategy for the construction
of quaternary carbon stereogenic centers at an allylic position
in acyclic systems, which is an important research topic in
synthetic organic chemistry.19
In conclusion, we report the electrophilic cyanation of allylic
boranes, which can be readily prepared by the hydroboration of
allenes and cyclic 1,3-dienes, for the selective and efficient
formation of synthetically useful b,g-unsaturated nitriles. This
process is operationally simple, easily scalable, and displays
a broad substrate scope with a high functional group tolerance.
The present method represents a new entry into synthetic
applications of allylic boranes. Further investigations of this
method in organic synthesis including enantioselective reactions
based on this preliminary result are currently in progress.
This work was supported by the JSPS KAKENHI Grant
Number 18K14217.
8 For selected recent reviews, see: (a) D. G. Hall, Synlett, 2007,
1644–1655; (b) H. Lachance and D. G. Hall, Org. React., 2008, 73,
´
1–573; (c) C. Diner and K. J. Szabo, J. Am. Chem. Soc., 2017, 139, 2–14.
9 For selected recent exmples, see: (a) J. L.-Y. Chen and V. K. Aggarwal,
Angew. Chem., Int. Ed., 2014, 53, 10992–10996; (b) R. Alam,
´
T. Vollgraff, L. Eriksson and K. J. Szabo, J. Am. Chem. Soc., 2015,
´
137, 11262–11265; (c) C. Garcıa-Ruiz, J. L.-Y. Chen, C. Sandford,
K. Feeney, P. Lorenzo, G. Berionni, H. Mayr and V. K. Aggarwal,
J. Am. Chem. Soc., 2017, 139, 15324–15327.
10 Electrophilic cyanation reactions of allylic copper species, generated
in situ by borocupration of allenes or 1,3-dienes, were reported,
see: (a) W. Zhao and J. Montgomery, J. Am. Chem. Soc., 2016, 138,
9763–9766; (b) T. Jia, Q. He, R. E. Ruscoe, A. P. Pulis and
D. J. Procter, Angew. Chem., Int. Ed., 2018, 57, 11305–11309.
11 H. C. Brown, R. Liotta and G. W. Kramer, J. Am. Chem. Soc., 1979,
101, 2966–2970.
12 Control experiments employing cinnamyl boronic acid pinacol
ester and cinnamyltrimethylsilane as a nucleophile resulted in no
reaction. See the ESI† for details.
13 For exmples of the synthesis of b,g-unsaturated nitriles, see: (a) R. Oda,
T. Kawabata and S. Tanimoto, Tetrahedron Lett., 1964, 5, 1653–1657;
Conflicts of interest
´ ´
´
(b) G. Deleris, J. Dunogues and R. Calas, J. Organomet. Chem., 1976,
116, C45–C48; (c) R. Yoneda, S. Harusawa and T. Kurihara, J. Org.
There are no conflicts to declare.
´ ´
Chem., 1991, 56, 1827–1832; (d) G. Deleris, J. P. Pillot and J. C. Rayez,
Tetrahedron, 1980, 36, 2215–2218; (e) E. K. A. Wolber, M. Schmittel and
C. Ru¨chardt, Chem. Ber., 1992, 125, 525–531; ( f ) T. Mino and
M. Yamashita, J. Org. Chem., 1996, 61, 1159–1160; (g) H. R. Hoveyda
Notes and references
1 (a) A. J. Fatiadi in Preparation and Synthetic Applications of Cyano
Compounds ed. S. Patai, Z. Rappaport, Wiley, New York, 1983;
(b) F. F. Fleming, Nat. Prod. Rep., 1999, 16, 597–606; (c) J. S. Miller
and J. L. Manson, Acc. Chem. Res., 2001, 34, 563–570; (d) F. F.
Fleming, L. Yao, P. C. Ravikumar, L. Funk and B. C. Shook, J. Med.
Chem., 2010, 53, 7902–7917.
2 (a) Three CarbonÀHeteroatom Bonds: Nitriles, Isocyanides, and
Derivatives in Science of Synthesis ed. S. Murahashi, Georg Thieme,
Stuttgart, 2004, vol. 19; (b) C-1 Building Blocks in Organic Synthesis
in Science of Synthesis, ed. P. W. N. M. van Leeuwen, Georg Thieme,
´
´
and M. Vezina, Org. Lett., 2005, 7, 2113–2116; (h) J. M. Concellon,
´
H. Rodrıguez-Solla, C. Simal, D. Santos and N. R. Paz, Org. Lett., 2008,
10, 4549–4552; (i) J. Choi and G. C. Fu, J. Am. Chem. Soc., 2012, 134,
9102–9105; ( j) S. Tang, C. Liu and A. Lei, Chem. Commun., 2013,
49, 2442–2444; (k) Y. Nishimoto, T. Nishimura and M. Yasuda,
Chem.ÀEur. J., 2015, 21, 18301–18308; (l) B. Gao, Y. Xie, L. Yang and
H. Huang, Org. Biomol. Chem., 2016, 14, 2399–2402; (m) X. Yang,
D. Nath, J. Morse, C. Ogle, E. Yurtoglu, R. Altundas and F. Fleming,
J. Org. Chem., 2016, 81, 4098–4102.
Stuttgart, 2014, vol. 1 and 2; (c) P. Merino in Comprehensive Organic 14 K. K. Wang, Y. G. Gu and C. Liu, J. Am. Chem. Soc., 1990, 112,
Synthesis, ed. P. Knochel and G. A. Molander, Elsevier, Amsterdam,
2014, vol. 1, pp 697–750.
4424–4431.
15 See the ESI† for details.
3 (a) S. Araki, K. Minami and Y. Butsugan, Bull. Chem. Soc. Jpn., 1981, 16 H. C. Brown, R. Liotta and G. W. Kramer, J. Org. Chem., 1978, 43,
54, 629–630; (b) H. Miyake and K. Yamamura, Tetrahedron Lett., 1058–1063.
1986, 27, 3025–3028; (c) M. Murakami, T. Kato and T. Mukaiyama, 17 The absolute configuration of the major isomer of 2r was deter-
Chem. Lett., 1987, 1167–1170; (d) T. Kanai, Y. Kanagawa and Y. Ishii, mined by the optical rotation. See the ESI† for details.
J. Org. Chem., 1990, 55, 3274–3277; (e) Y. Tsuji, N. Yamada and 18 Enantioselective cyanation using diene 4a, (À)-(Ipc)2BH, and NCTS
S. Tanaka, J. Org. Chem., 1993, 58, 16–17; ( f ) D. Munemori, H. Tsuji, resulted in 22% ee. See the ESI† for details.
K. Uchida, T. Suzuki, K. Isa, M. Minakawa and M. Kawatsura, 19 J. Feng, M. Holmes and M. J. Krische, Chem. Rev., 2017, 117,
Synthesis, 2014, 2747–2750.
12564–12580.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 458--461 | 461