Organic Letters
Letter
Yamashita, Y.; Kamiyama, T.; Steiner, B. Biochem. Biophys. Res.
Commun. 1994, 204, 325.
(6) BouzBouz, S.; Cossy, J. Org. Lett. 2004, 6, 3469.
(7) (a) Gudipati, V.; BajPai, R.; Curran, D. P. Collect. Czech. Chem.
Commun. 2009, 74, 774. (b) Zhang, K.; Gudipati, V.; Curran, D. P.
Synlett 2010, 667. (c) Gudipati, V.; Curran, D. P. Tetrahedron Lett.
Scheme 5. Reductive Coupling of Alkenyl Bromide 6 and
Epoxide 13 To Form the C9−C20 Substructure of
a
Tetrafibricin
(8) Friestad, G. K.; Sreenilayam, G. Org. Lett. 2010, 12, 5016.
(9) (a) Lira, R.; Roush, W. R. Org. Lett. 2007, 9, 533. (b) Kister, J.;
Nuhant, P.; Lira, R.; Sorg, A.; Roush, W. R. Org. Lett. 2011, 13, 1868.
(c) Nuhant, P.; Roush, W. R. J. Am. Chem. Soc. 2013, 135, 5340.
(10) Kumpulainen, E. T. T.; Kang, B.; Krische, M. J. Org. Lett. 2011,
13, 2484.
(11) For recent reviews on C−C bond forming hydrogenation and
transfer hydrogenation, see: (a) Bower, J. F.; Krische, M. J. Top.
Organomet. Chem. 2011, 43, 107. (b) Hassan, A.; Krische, M. J. Org.
Process Res. Dev. 2011, 15, 1236. (c) Moran, J.; Krische, M. J. Pure
Appl. Chem. 2012, 84, 1729. (d) Dechert-Schmitt, A.-M. R.; Schmitt,
D. C.; Gao, X.; Itoh, T.; Krische, M. J. Nat. Prod. Rep. 2014,
DOI: 10.1039/C3NP70076C.
a
Yields are of material isolated by silica gel chromatography. See
Supporting Information for further details.
(12) (a) Gao, X.; Woo, S. K.; Krische, M. J. J. Am. Chem. Soc. 2013,
135, 4223. (b) Lu, Y.; Woo, S. K.; Krische, M. J. J. Am. Chem. Soc.
2011, 133, 13876. (c) Del Valle, D. J.; Krische, M. J. J. Am. Chem. Soc.
2013, 135, 10986. (d) Waldeck, A. R.; Krische, M. J. Angew. Chem., Int.
Ed. 2013, 52, 4470. (e) Han, S. B.; Hassan, A.; Kim, I. S.; Krische, M. J.
J. Am. Chem. Soc. 2010, 132, 15559.
(13) For an overview of “redox economy” in organic synthesis, see:
Baran, P. S.; Hoffmann, R. W.; Burns, N. Z. Angew. Chem., Int. Ed.
2009, 48, 2854.
discrete alcohol-to-aldehyde redox reactions, makes the present
iridium catalyzed allylation protocol both cost-effective and
step-economical. A more systematic study of catalyst recovery
and recycling, including immobilization of the catalyst on a
solid support, will be reported in due course.
(14) For enantioselective iridium catalyzed alcohol C−H allylations
employing allyl acetate, see: (a) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J.
Am. Chem. Soc. 2008, 130, 6340. (b) Kim, I. S.; Ngai, M.-Y.; Krische,
M. J. J. Am. Chem. Soc. 2008, 130, 14891. (c) Lu, Y.; Kim, I. S.; Hassan,
A.; Del Valle, D. J.; Krische, M. J. Angew. Chem., Int. Ed. 2009, 48,
5018. (d) Hassan, A.; Lu, Y.; Krische, M. J. Org. Lett. 2009, 11, 3112.
(e) Schmitt, D. C.; Dechert-Schmitt, A.-M. R.; Krische, M. J. Org. Lett.
2012, 14, 6302. (f) Dechert-Schmitt, A.-M. R.; Schmitt, D. C.; Krische,
M. J. Angew. Chem., Int. Ed. 2013, 52, 3195.
(15) For enantioselective ruthenium catalyzed alcohol C−H
crotylation via diene hydrohydroxyalkylation, see: (a) Zbieg, J. R.;
Moran, J.; Krische, M. J. J. Am. Chem. Soc. 2011, 133, 10582.
(b) Zbieg, J. R.; Yamaguchi, E.; McInturff, E. L.; Krische, M. J. Science
2012, 336, 324. (c) McInturff, E. L.; Yamaguchi, E.; Krische, M. J. J.
Am. Chem. Soc. 2012, 134, 20628.
ASSOCIATED CONTENT
* Supporting Information
■
S
Spectral data for all new compounds (1H NMR, 13C NMR, IR,
HRMS). This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(16) Oikawa, Y.; Nishi, T.; Yonemitsu, O. Tetrahedron Lett. 1983, 24,
4037.
■
Acknowledgment is made to the Robert A. Welch Foundation
(F-0038), the NIH-NIGMS (RO1-GM093905), and the
Center for Green Chemistry and Catalysis for partial support
of this research. Dr. Taichiro Touge and Dr. Hideo Shimizu of
Takasago are thanked for the generous donation of SEGPHOS
ligands.
(17) (a) Miller, R. B.; Reichenbach, T. Tetrahedron Lett. 1974, 15,
543. (b) Miller, R. B.; McGarvey, G. J. Org. Chem. 1978, 43, 4424.
(c) Miller, R. B.; McGarvey, G. J. Org. Chem. 1979, 44, 4623.
(18) Gao, X.; Townsend, I. A.; Krische, M. J. J. Org. Chem. 2011, 76,
2350.
(19) Lee, D.; Williamson, C. L.; Chan, L.; Taylor, M. S. J. Am. Chem.
Soc. 2012, 134, 8260.
REFERENCES
(20) (a) Bartlett, P. A.; Meadows, J. D.; Brown, E. G.; Morimoto, A.;
Jernstedt, K. K. J. Org. Chem. 1982, 47, 4013. (b) For recent examples:
Smith, A. B., III; Lin, Q.; Nakayama, K.; Boldi, A. M.; Brook, C. S.;
McBriar, M. D.; Moser, W. H.; Sobukawa, M.; Zhuang, L. Tetrahedron
Lett. 1997, 38, 8675. (c) Stivala, C. E.; Gu, Z.; Smith, L. L.; Zakarian,
A. Org. Lett. 2012, 14, 804.
(21) For seminal reports of epoxide ring openings employing alkenyl
cuprate reagents and their thienyl modified analogues, respectively,
see: (a) Herr, R. W.; Wieland, D. M.; Johnson, C. R. J. Am. Chem. Soc.
1970, 92, 3813. (b) Lipshutz, B. H.; Koerner, M.; Parker, D. A.
Tetrahedron Lett. 1987, 28, 945.
■
(1) Isolation and structure assignment: (a) Kamiyama, T.; Umino,
T.; Fujisaki, N.; Satoh, T.; Yamashita, Y.; Ohshima, S.; Watanabe, J.;
Yokose, K. J. Antibiot. 1993, 46, 1039. (b) Kamiyama, T.; Itezono, Y.;
Umino, T.; Satoh, T.; Nakayama, N.; Yokose, K. J. Antibiot. 1993, 46,
1047. (c) Kobayashi, Y.; Czechtizky, W.; Kishi, Y. Org. Lett. 2003, 5,
93.
(2) Satoh, T.; Yamashita, Y.; Kamiyama, T.; Watanabe, J.; Steiner, B.;
Hadvary, B.; Arisawa, M. Thromb. Res. 1993, 72, 389.
(3) Satoh, T.; Yamashita, Y.; Kamiyama, T.; Arisawa, M. Thromb. Res.
1993, 72, 401.
(22) For selected examples from the total synthesis literature of
related epoxide ring openings employing alkenyl cuprate reagents and
their thienyl modified analogues, respectively, see: (a) Guo, J.; Duffy,
K. J.; Stevens, K. L.; Dalko, P. I.; Roth, R. M.; Hayward, M. M.; Kishi,
(4) Pawlak, J.; Nakanishi, K.; Iwashita, T.; Borowski, E. J. Org. Chem.
1987, 52, 2896.
(5) (a) Satoh, T.; Kouns, W. C.; Yamashita, Y.; Kamiyama, T.;
Steiner, B. Biochem. J. 1994, 301, 785. (b) Satoh, T.; Kouns, W. C.;
822
dx.doi.org/10.1021/ol403566w | Org. Lett. 2014, 16, 820−823