3
inhibitory concentrations (MIC) of the synthesized compounds
were determined and the results are reported in Table 2.
Essays are under investigation in order to evaluate how the
presence of iodine atom and its position on the phenol ring could
influence the antibacterial activity.
Acknowledgments
Table 2. MIC (mg/mL) values of polyoxygenated allyl benzenes
(2-4) and iododerivatives (6-10).
Financial support has been provided by Università degli Studi
della Basilicata.
compound
MIC (mg/mL)
B.subtilis E. coli
compound
MIC (mg/mL)
B.subtilis E. coli
Authors would like to thank Prof. Antonio Rosato of
University of Bari –“Aldo Moro” for providing microorganisms
used in this study.
2a
2b
2c
2d
3a
3b
3c
3d
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
4a
4b
4c
4d
6
1.2
1.2
1.2
ND
1.2
1.2
1.2
ND
References and notes
1. (a) Gang, D. R.; Wang, J.; Dudareva, N.; Nam, K. H.;
Simon, J.; Lewinsohn, E.; Pichersky, E. Plant Physiol.
2001, 125, 539–555. (b) Guenther, E. 1949. The Essential
Oils. Vol. 2., D. Van Nostrand Co. Inc., Princeton, NJ, 852
pp.
1.2
ND
1.2
ND
1.2
1.2
7
1.2
1.2
8
ND
ND
1.2
1.2
9
1.0
ND
0.128
ND
2. Wang, L.-H.; Chen J.-X; Wang, C.-C. J. Essential Oil Res.
2014, 26, 185-196.
10
3. Hassam, M.; Taher, A.; Arnott, G. E.; Green, I. R.; Van
Otterlo W. A. L. Chem. Rev. 2015, 115, 5462−5569.
4. (a) Pinto, E.; Pina-Vaz, C.; Salgueiro, L.; Goncalves, M. J.;
Costade-Oliveira, S.; Cavaleiro, C.; Palmeira, A.;
Rodrigues, A.; Martinez-de-Oliveira, J. J. Med. Microbiol.
2006, 55, 1367-1373. (b) Dordevic, S.; Petrovic, S.; Dobric,
S.; Milenkovic, M.; Vucicevic, D.; Zizic, S.; Kukic, J.
Ethnopharmacol. 2007, 109, 458-463.
ND not determined.
All compounds were solubilized in dimethyl sulfoxide
(DMSO), and added in the final reaction mixture containing the
different microorganisms as described in the experimental
section. Unfortunately, MICs of compounds 4d, 7, 8 and 10 were
not determined because they are insoluble under the conditions
used for the assay.
5. de Sousa, A. C.; Alviano, D. S.; Blank, A. F.; Alves, P. B.;
Alviano, C. S.; Gattass, C. R. J. Pharm. Pharmacol. 2004,
56, 677-681.
6. (a) Burt, S. Int. J. Food Microbiol. 2004, 94, 223-53. (b)
Pauli, A.; Kubeczka, K.–H. Nat Prod Commun. 2010, 5,
1387-1394.
The antibacterial screening revealed that allyl aryl ethers 2a-d
and methoxy allyl benzenes 4a-c did not inhibit the growth of B.
subtilis and E. coli. In contrast the presence of the free hydroxyl
group on aromatic ring (3a-d compounds) led to enhanced
antibacterial effect confirming the key role of phenolic part for
the antimicrobial activity.22-24
7. (a) Semenov, V. V.; Rusak, V. A.; Chartov, E. M.;
Zaretsky, M. I.; Konyushkin, L. D.; Firgang, S. I.; Chizhov,
A. O.; Elkin, V. V.; Latin, N. N.; Bonashek, V. M.;
Stas’eva, O. N. Russ. Chem. Bull. 2007, 56, 2448–2455. (b)
Louli, V.; Folas, G.; Voutsas, E.; Magoulas, K. J. Supercrit.
Fluids 2004, 30, 163–174. (c) Jimenez Arellanes, A.; Mata,
R.; Lotina-Henssen, B.; Anaya Lang, A. L.; Velasco Ibarra,
L. J. Nat. Prod. 1996, 59, 202-204.
8. Some examples are reported in: (a) Semenova, M. N.;
Kiselyov, A. S.; Tsyganov, D. V.; Konyushkin, L. D.;
Firgang, S. I.; Semenov, R. V; Malyshev, O. R.; Raihstat,
M. M.; Fuchs, F.; Stielow, A.; Lantow, M.; Philchenkov, A.
A.; Zavelevich, M. P.; Zefirov, N. S.; Kuznetsov, S. A.;
Semenov, V. V. J. Med. Chem. 2011, 54, 7138–7149. (b)
Semenov, V. V.; Kiselyov, A. S.; Titov, I. Y.; Sagamanova,
I. K.; Ikizalp, N. N.; Chernysheva, N. B.; Tsyganov, D. V.;
Konyushkin, L. D.; Firgang, S. I.; Semenov, R. V.;
Karmanova, I. B.; Raihstat, M. M.; Semenova, M. N. J.
Nat. Prod. 2010, 73, 1796–1802. (c) Tsyganov, D. V.;
Krayushkin, M. M.; Konyushkin, L. D.; Strelenko, Y. A.;
Semenova, M. N.; Semenov, V. V. J. Nat. Prod. 2016, 79,
923−928.
It should be stressed that the similar behavior of phenolic
compounds on E. coli and B. subtilis has suggested a broad-
spectrum antimicrobial effect of the tested compounds, but it is
not easy to propose a mechanism. It has been reported that
phenolic compounds could interact with the cell membrane of
microorganisms,25 by leading to permeability changes of cations
like H+ and K+.23,26 The resulting dissipation of ion gradients
could affect cell viability causing cell death.
Interestingly, the greatest effect was measured in the presence
of compound 9 for B. subtilis (0.128 mg/mL), while E. coli
remained insensitive to this compound. The reason of this
toxicity against Gram positive bacteria is not clear but the iodine
atom on the phenol ring appears to be important.
In conclusion, a synthetic and efficient methodology to obtain
regioselectively functionalized polyoxygenated allyl phenols has
been successfully achieved via Et2AlCl-mediated Claisen
rearrangement. Moreover, chemoselective iodinations via NIS or
tBuNH2/I2 complex on the same starting phenol 3a have provided
iodo-dihydrobenzofuran or iodinated aromatic compounds,
respectively.
9
(a) Lutz, R. P. Chem. Rev. 1984, 84, 205–247. (b)
Majumdar, K. C.; Alam, S.; Chattopadhyay, B. Tetrahedron
2008, 64, 597–643. (c) Martín Castro, A. M. Chem. Rev.
2004, 104, 2939–3002.
Finally, according to biological studies on a very small library
of synthesized compounds, one can speculate that the allyl aryl
ethers (2a-d) as well as the polymethoxy allylbenzenes (4a-c)
show a negligible antibacterial activity while phenols 3a-d had a
modest activity towards both Gram positive and Gram negative
bacteria. The functionalization of phenolic ring of 3a with an
iodine in para position leads to higher antibacterial activity on
Gram positive.
10 Sonnenberg, F. M. J. Org. Chem. 1970, 35, 3166–3167.
11 Davis, C. J.; Hurst, T. E.; Jacob, A. M.; Moody, C. J. J.
Org. Chem. 2005, 70, 4414–4422.