Communication
RSC Advances
2 L. Dalla Via, C. Nardon and D. Fregona, Future Med. Chem.,
2012, 4, 525.
3 A. F. Kisselev, W. A. van der Linden and H. S. Overklee,
Chem. Biol., 2012, 19, 99.
4 S. Frankland-Searby and S. R. Bhaumik, Biochim. Biophys.
Acta, Rev. Cancer, 2012, 1825, 64.
5 K. S. Sub and A. Goy, Future Oncol., 2008, 4, 149.
6 C. H. Takimoto and E. Calvo, Cancer Management: A
Multidisciplinary Approach, 11th edn, 2008.
7 L. J. Milo, Jr., J. H. Lai, W. Wu, Y. Liu, H. Maw, Y. Li, Z. Jin,
Y. Shu, S. E. Poplawski, Y. Wu, D. G. Sanford,
J. L. Sudmeier and W. W. Bachovchin, J. Med. Chem., 2011,
54, 4365.
Fig. 3 X-ray crystal structure of 5b0.
8 S. E. Poplawski, J. H. Lai, D. C. Sanford, J. L. Sudmeier,
W. Wu and W. W. Bachovchin, J. Med. Chem., 2011, 54,
2022.
9 B. A. Connolly, D. G. Sanford, A. K. Chiluwal, S. E. Healey,
D. E. Peters, M. T. Dimare, W. Wu, Y. Liu, H. Maw,
Y. Zhou, Y. Li, Z. Jin, J. L. Sudmeier, J. H. Lai and
W. W. Bachovchin, J. Med. Chem., 2008, 51, 6005.
10 J. H. Lai, W. Wu, Y. Zhou, H. H. Maw, Y. Liu, L. J. Milo,
S. E. Poplawski, G. D. Henry, J. L. Sudmeier, D. G. Sanford
and W. W. Bachovchin, J. Med. Chem., 2007, 50,
2391.
Scheme 2 Synthesis of a proline equivalent aminoboronate 8.
Conclusions
In summary, we found that in NHC–copper(I) catalyzed asym-
metric synthesis of a-aminoboronic esters using bis(pinane-
diolato)diboron (B2pnd2) as nucleophile, a triazole-based NHC
performed much better than either benzimidazole or 3,4-dihy-
dro-quinazoline based NHCs. The yields for aromatic N-tert-
butanesulnyl imine substrates were largely improved owing to
the higher stabilities of the pinanediol-attached products. In
addition, the tolerance of alkyl halides allows the formation of
N-cyclic a-aminoboronic esters. We expect the new NHC
precursors will offer improved access to a-aminoboronic esters
in drug discovery and industrial applications.
´
´
11 S. I. Gazic, E. Casas-Arce, S. J. Roseblade, U. Nettekoven,
ˇ
ˇ
ˇ
A. Zanotti-Gerosa, M. Kovacevic and Z. Casar, Angew.
Chem., Int. Ed., 2012, 51, 1014.
12 M. A. Beenen, C. An and J. A. Ellman, J. Am. Chem. Soc., 2008,
130, 6910.
´
´
´
13 C. Sole, H. Gulyas and E. Fernandez, Chem. Commun., 2012,
48, 3769.
14 S.-S. Zhang, Y.-S. Zhao, P. Tian and G.-Q. Lin, Synlett, 2013,
24, 437.
15 D. S. Laitar, E. Y. Tsui and J. P. Sadighi, J. Am. Chem. Soc.,
2006, 128, 11036.
16 W. A. Herrmann, C. P. Reisinger and M. Spiegler,
J. Organomet. Chem., 1998, 557, 93.
17 C. M. Zhang, J. K. Huang, M. L. Trudell and S. P. Nolan,
J. Org. Chem., 1999, 64, 3804.
18 G. A. Grasa and S. P. Nolan, Org. Lett., 2001, 3, 119.
19 V. P. W. Bohm, C. W. K. Gstottmayr, T. Weskamp and
W. A. Herrmann, Angew. Chem., Int. Ed., 2001, 40,
3387.
Acknowledgements
We thank Dr Erkang Fan at the University of Washington for
helpful discussions. Financial support for this work was provided
by Shanghai Saijia Chemicals Ltd., Shanghai Municipal Educa-
tion Commission (no. 14ZZ159), Shanghai Municipal Science and
Technology Commission (no. 12430501300) and the Orientalist
(Chair Professor) Funding from Shanghai Municipal Education
Commission. We also thank the nancial support from the
Special Scientic Foundation for Outstanding Young Teachers in
Shanghai Higher Education Institutions (ZZGJD13020), and Start-
up Funding of Shanghai University of Engineering Science.
20 M. Eckhardt and G. C. Fu, J. Am. Chem. Soc., 2003, 125,
13642.
21 S. R. Stauffer, S. W. Lee, J. P. Stambuli, S. I. Hauck and
J. F. Hartwig, Org. Lett., 2000, 2, 1423.
22 T.-Y. Jian, L. He, C. Tang and S. Ye, Angew. Chem., Int. Ed.,
2011, 50, 9104.
Notes and references
23 K. Wen, H. Wang, J.-b. Chen, H. Zhang, X.-D. Cui, C. Wei,
E.-K. Fan and Z.-H. Sun, J. Org. Chem., 2013, 78,
3405.
1 M. M. Young, Y. Takahashi, O. Khan, S. Park, T. Hori, J. Yun,
A. K. Sharma, S. Amin, C.-D. Hu, J. Zhang, M. Kester and
H.-G. Wang, J. Biol. Chem., 2012, 287, 12455.
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 21131–21133 | 21133